login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307420
Dirichlet g.f.: zeta(2*s) * zeta(3*s) / zeta(s).
3
1, -1, -1, 1, -1, 1, -1, 0, 1, 1, -1, -1, -1, 1, 1, 0, -1, -1, -1, -1, 1, 1, -1, 0, 1, 1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 1, -1, 1, 1, 0, -1, -1, -1, -1, -1, 1, -1, 0, 1, -1, 1, -1, -1, 0, 1, 0, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 0, -1, 1, -1
OFFSET
1
COMMENTS
Dirichlet convolution of A008836 and A010057.
Dirichlet convolution of A210826 and A010052.
LINKS
Eric Weisstein's World of Mathematics, Dirichlet Generating Function.
Wikipedia, Dirichlet series.
FORMULA
Multiplicative with a(p^e) = 1 if e == 0 or 2 (mod 6), -1 if e == 1 (mod 6), and 0 otherwise. - Amiram Eldar, Dec 25 2022
MATHEMATICA
Table[DivisorSum[n, Boole[IntegerQ[#^(1/3)]] * LiouvilleLambda[n/#]&], {n, 1, 100}]
Table[DivisorSum[n, Mod[DivisorSigma[0, #], 3, -1] * Boole[IntegerQ[Sqrt[n/#]]] &], {n, 1, 100}]
f[p_, e_] := Switch[Mod[e, 6], 0, 1, 1, -1, 2, 1, 3, 0, 4, 0, 5, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 25 2022 *)
PROG
(PARI) for(n=1, 100, print1(direuler(p=2, n, 1/((1+X)*(1-X^3)))[n], ", ")) \\ Vaclav Kotesovec, Jun 14 2020
CROSSREFS
Cf. A010052, A010057, A008836, A210826, A307425 (Dirichlet inverse).
Sequence in context: A053864 A189021 A212793 * A129667 A071374 A071025
KEYWORD
sign,mult
AUTHOR
Vaclav Kotesovec, Apr 08 2019
STATUS
approved