The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A210826 G.f.: Sum_{n>=1} a(n)*x^n/(1 - x^n) = Sum_{n>=1} x^(n^3). 12
 1, -1, -1, 0, -1, 1, -1, 1, 0, 1, -1, 0, -1, 1, 1, -1, -1, 0, -1, 0, 1, 1, -1, -1, 0, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, 1, 1, -1, -1, -1, -1, 0, 0, 1, -1, 1, 0, 0, 1, 0, -1, -1, 1, -1, 1, 1, -1, 0, -1, 1, 0, 1, 1, -1, -1, 0, 1, -1, -1, 0, -1, 1, 0, 0, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Compare to Liouville's function lambda (A008836) which satisfies the Lambert series identity: Sum_{n>=1} lambda(n)*x^n/(1-x^n) = Sum_{n>=1} x^(n^2). This is a multiplicative sequence with Dirichlet g.f. zeta(3s)/zeta(s) and inverse Mobius transform in A010057. - R. J. Mathar, Mar 31 2012 LINKS Paul D. Hanna, Table of n, a(n) for n = 1..1035 FORMULA a(n) == d(n) (mod 3), where d(n) is the number of divisors of n; a(n) = 0 iff the number of divisors of n is divisible by 3 (A059269), a(n) = 1 iff d(n) == 1 (mod 3), a(n) = -1 iff d(n) == 2 (mod 3). Multiplicative with a(p^e) = -1 + ((e+2) mod 3). Thus the Dirichlet g.f. is indeed zeta(3s)/zeta(s). Also sumdiv(n,d,a(d))=1 iff n is a cube, else sumdiv(n,d,a(d))=0 hence Sum_{k=1..n} a(k)*floor(n/k) = floor(n^(1/3)). - Benoit Cloitre, Oct 28 2012 EXAMPLE G.f.: x/(1-x) - x^2/(1-x^2) - x^3/(1-x^3) - x^5/(1-x^5) + x^6/(1-x^6) - x^7/(1-x^7) + x^8/(1-x^8) + x^10/(1-x^10) - x^11/(1-x^11) + ... + a(n)*x^n/(1-x^n) + ... = x + x^8 + x^27 + x^64 + x^125 + x^216 + x^343 + ... + x^(n^3) + ... MAPLE Z := proc(n, k) local a, pf, e ; a := 1 ; for pf in ifactors(n)[2] do e := pf[2] ; if modp(e, k) = 0 then ; elif modp(e, k) = 1 then a := -a ; else a := 0 ; end if; end do; a; end proc: A210826 := proc(n) Z(n, 3) ; end proc: # R. J. Mathar, May 28 2016 MATHEMATICA Mod[Table[DivisorSigma[0, n], {n, 1, 100}], 3, -1] (* Geoffrey Critzer, Mar 19 2015 *) PROG (PARI) {a(n) = if( n==0, 0, kronecker( -3, numdiv(n)))}; /* Michael Somos, Mar 28 2012 */ (PARI) {a(n)=[0, 1, -1][numdiv(n)%3+1]} /* a(n) == d(n) (mod 3) */ (PARI) {a(n)=local(CUBES=sum(k=1, floor(n^(1/3)), x^(k^3))); if(n==1, 1, polcoeff(CUBES-sum(m=1, n-1, a(m)*x^m/(1-x^m+x*O(x^n))), n))} (PARI) /* Vectorized form (faster): */ {A=[1]; for(i=1, 256, print1(A[#A], ", "); A=concat(A, 0); A[#A]=polcoeff(sum(k=1, ceil((#A)^(1/3)), x^(k^3)) - sum(m=1, #A-1, A[m]*x^m/(1-x^m+x*O(x^#A))), #A)); print1(A[#A])} {sum(n=1, #A, A[n]*x^n/(1-x^n+O(x^(#A))))} /* Verify Lambert series */ (PARI) for(n=1, 100, print1(direuler(p=2, n, (1-X)/(1-X^3))[n], ", ")) \\ Vaclav Kotesovec, Jun 14 2020 CROSSREFS Cf. A008836, A010057, A059269, A212793 (Dirichlet inverse), A219009. Sequence in context: A295316 A014677 A307425 * A307421 A299406 A287769 Adjacent sequences: A210823 A210824 A210825 * A210827 A210828 A210829 KEYWORD sign,mult AUTHOR Paul D. Hanna, Mar 27 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 14:54 EST 2023. Contains 367657 sequences. (Running on oeis4.)