login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A210826 G.f.: Sum_{n>=1} a(n)*x^n/(1 - x^n) = Sum_{n>=1} x^(n^3). 12
1, -1, -1, 0, -1, 1, -1, 1, 0, 1, -1, 0, -1, 1, 1, -1, -1, 0, -1, 0, 1, 1, -1, -1, 0, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, 1, 1, -1, -1, -1, -1, 0, 0, 1, -1, 1, 0, 0, 1, 0, -1, -1, 1, -1, 1, 1, -1, 0, -1, 1, 0, 1, 1, -1, -1, 0, 1, -1, -1, 0, -1, 1, 0, 0, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Compare to Liouville's function lambda (A008836) which satisfies the Lambert series identity: Sum_{n>=1} lambda(n)*x^n/(1-x^n) = Sum_{n>=1} x^(n^2).
This is a multiplicative sequence with Dirichlet g.f. zeta(3s)/zeta(s) and inverse Mobius transform in A010057. - R. J. Mathar, Mar 31 2012
LINKS
FORMULA
a(n) == d(n) (mod 3), where d(n) is the number of divisors of n;
a(n) = 0 iff the number of divisors of n is divisible by 3 (A059269),
a(n) = 1 iff d(n) == 1 (mod 3),
a(n) = -1 iff d(n) == 2 (mod 3).
Multiplicative with a(p^e) = -1 + ((e+2) mod 3). Thus the Dirichlet g.f. is indeed zeta(3s)/zeta(s). Also sumdiv(n,d,a(d))=1 iff n is a cube, else sumdiv(n,d,a(d))=0 hence Sum_{k=1..n} a(k)*floor(n/k) = floor(n^(1/3)). - Benoit Cloitre, Oct 28 2012
EXAMPLE
G.f.: x/(1-x) - x^2/(1-x^2) - x^3/(1-x^3) - x^5/(1-x^5) + x^6/(1-x^6) - x^7/(1-x^7) + x^8/(1-x^8) + x^10/(1-x^10) - x^11/(1-x^11) + ... + a(n)*x^n/(1-x^n) + ...
= x + x^8 + x^27 + x^64 + x^125 + x^216 + x^343 + ... + x^(n^3) + ...
MAPLE
Z := proc(n, k)
local a, pf, e ;
a := 1 ;
for pf in ifactors(n)[2] do
e := pf[2] ;
if modp(e, k) = 0 then
;
elif modp(e, k) = 1 then
a := -a ;
else
a := 0 ;
end if;
end do;
a;
end proc:
A210826 := proc(n)
Z(n, 3) ;
end proc: # R. J. Mathar, May 28 2016
MATHEMATICA
Mod[Table[DivisorSigma[0, n], {n, 1, 100}], 3, -1] (* Geoffrey Critzer, Mar 19 2015 *)
PROG
(PARI) {a(n) = if( n==0, 0, kronecker( -3, numdiv(n)))}; /* Michael Somos, Mar 28 2012 */
(PARI) {a(n)=[0, 1, -1][numdiv(n)%3+1]} /* a(n) == d(n) (mod 3) */
(PARI) {a(n)=local(CUBES=sum(k=1, floor(n^(1/3)), x^(k^3))); if(n==1, 1, polcoeff(CUBES-sum(m=1, n-1, a(m)*x^m/(1-x^m+x*O(x^n))), n))}
(PARI) /* Vectorized form (faster): */
{A=[1]; for(i=1, 256, print1(A[#A], ", "); A=concat(A, 0); A[#A]=polcoeff(sum(k=1, ceil((#A)^(1/3)), x^(k^3)) - sum(m=1, #A-1, A[m]*x^m/(1-x^m+x*O(x^#A))), #A)); print1(A[#A])}
{sum(n=1, #A, A[n]*x^n/(1-x^n+O(x^(#A))))} /* Verify Lambert series */
(PARI) for(n=1, 100, print1(direuler(p=2, n, (1-X)/(1-X^3))[n], ", ")) \\ Vaclav Kotesovec, Jun 14 2020
CROSSREFS
Cf. A008836, A010057, A059269, A212793 (Dirichlet inverse), A219009.
Sequence in context: A295316 A014677 A307425 * A307421 A299406 A287769
KEYWORD
sign,mult
AUTHOR
Paul D. Hanna, Mar 27 2012
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 14:54 EST 2023. Contains 367657 sequences. (Running on oeis4.)