The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A010057 a(n) = 1 if n is a cube, else 0. 72
 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Multiplicative with a(p^e) = 1 if 3 divides e, 0 otherwise. - Mitch Harris, Jun 09 2005 a(A000578(n)) = 1; a(A007412(n)) = 0. - Reinhard Zumkeller, Oct 22 2011 a(n) = A000007(sum(A010872(A124010(n,k))): k = 1..A001221(n)) for n > 0. - Reinhard Zumkeller, Jun 21 2013 If n has 4 divisors, a(n) = bigomega(n) - 2. - Wesley Ivan Hurt, Jun 06 2014 REFERENCES E. Landau, Elementary Number Theory, translation by Jacob E. Goodman of Elementare Zahlentheorie (Vol. I_1 (1927) of Vorlesungen ueber Zahlentheorie), by Edmund Landau, with added exercises by Paul T. Bateman and E. E. Kohlbecker, Chelsea Publishing Co., New York, 1958, pp. 31-32. LINKS Reinhard Zumkeller, Table of n, a(n) for n = 0..10000 FORMULA Dirichlet generating function: zeta(3s). - Franklin T. Adams-Watters, Sep 11 2005 a(n) = f(n,0) with f(x,y) = if x>0 then f(x-3*y*(y+1),y+1) else 0^(-x). - Reinhard Zumkeller, Sep 27 2008 a(n) = 1 + floor(n^(1/3)) - ceiling(n^(1/3)). - Wesley Ivan Hurt, Jun 06 2014 a(n) = floor(n^(1/3)) - floor((n-1)^(1/3)). - Mikael Aaltonen, Feb 24 2015 MAPLE A010057 := proc(n)     if isA000578(n) then # implemented in A000578         1;     else         0;     end if; end proc: # R. J. Mathar, May 28 2016 MATHEMATICA Table[ Boole[ IntegerQ[n^(1/3)]], {n, 0, 80}] (* Jean-François Alcover, Jun 10 2013 *) PROG (Haskell) a010057 0 = 1 a010057 n = fromEnum \$ all ((== 0) . (`mod` 3)) \$ a124010_row n a010057_list = concatMap (\x -> 1 : replicate (a003215 x - 1) 0) [0..] -- Reinhard Zumkeller, Jun 21 2013, Oct 22 2011 (PARI) a(n) = ispower(n, 3); \\ Michel Marcus, Feb 24 2015 (Python) from sympy import integer_nthroot def A010057(n): return int(integer_nthroot(n, 3)[1]) # Chai Wah Wu, Apr 02 2021 CROSSREFS Cf. A000578. Cf. A003215. - Reinhard Zumkeller, Sep 27 2008 Sequence in context: A281815 A205988 A167700 * A204220 A281814 A279484 Adjacent sequences:  A010054 A010055 A010056 * A010058 A010059 A010060 KEYWORD nonn,easy,mult AUTHOR N. J. A. Sloane, Mar 15 1996 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 05:20 EST 2021. Contains 349426 sequences. (Running on oeis4.)