login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A199918
Expansion of false theta series variation of Euler's pentagonal number series in powers of x.
3
1, 1, 1, 0, 0, 1, 0, -1, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0
OFFSET
0,1
FORMULA
a(n) = b(24*n + 1) where b(n) is multiplicative with b(p^(2*e)) = (-1)^e if p == 13, 17, 29, 23 (mod 24), b(p^(2*e)) = +1 if p = 1, 5, 7, 11 (mod 24) and b(p^(2*e - 1)) = b(2^e) = b(3^e) = 0 if e > 0.
G.f.: 1 + Sum_{k>0} x^k / Product_{i=1..k} (1 + x^(2*i)) = 1 + Sum_{k>0} x^k * Product_{i=1..k-1} (1 + (-x)^i) = Sum_{k in Z} x^((k^2 - 1) / 24) * Kronecker(-24, k).
|a(n)| = |A010815(n)| = |A143062(n)|.
EXAMPLE
G.f. = 1 + x + x^2 + x^5 - x^7 - x^12 - x^15 - x^22 + x^26 + x^35 + x^40 + ...
G.f. = q + q^25 + q^49 + q^121 - q^169 - q^289 - q^361 - q^529 + q^625 + q^841 + ...
MATHEMATICA
a[ n_] := If[ SquaresR[ 1, 24 n + 1] == 2, KroneckerSymbol[ -6, Sqrt[ 24 n + 1]], 0];
PROG
(PARI) {a(n) = my(m); if( issquare( 24*n + 1, &m), kronecker( -6, m), 0)};
CROSSREFS
Sequence in context: A206959 A080995 A121373 * A229894 A256538 A074910
KEYWORD
sign
AUTHOR
Michael Somos, Nov 12 2011
STATUS
approved