OFFSET
0,1
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Eric Weisstein's World of Mathematics, Quintuple Product Identity
FORMULA
Expansion of f(x^4, -x^8) * f(-x^8,-x^8) / f(-x,x^3) in powers of x where f() is Ramanujan't two-variable theta function.
Euler transform of period 16 sequence [ 1, 0, -1, 0, -1, 1, 1, -2, 1, 1, -1, 0, -1, 0, 1, -1, ...].
G.f.: Sum_{k in Z} (-1)^floor(k/2) * x^(k*(6*k - 2)) * (x^(3*k) - x^(-3*k + 1)).
G.f.: Product_{k>0} (1 + (-1)^k * x^(4*k-1)) * (1 - (-1)^k * x^(4*k-3)) * (1 - (-1)^k * x^(4*k)) * (1 + x^(8*k-6)) * (1 + x^(8*k-2)).
a(5*n + 3) = a(5*n + 4) = 0. |a(n)| = A080995(n).
a(n) = (-1)^n * A206958(n). - Michael Somos, Apr 01 2015
EXAMPLE
G.f. = 1 + x + x^2 - x^5 + x^7 - x^12 - x^15 - x^22 - x^26 - x^35 - x^40 + x^51 - ...
G.f. = q + q^25 + q^49 - q^121 + q^169 - q^289 - q^361 - q^529 - q^625 - q^841 - ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ Product[ (1 - x^k)^{-1, 0, 1, 0, 1, -1, -1, 2, -1, -1, 1, 0, 1, 0, -1, 1}[[Mod[k, 16, 1]]], {k, n}], {x, 0, n}]; (* Michael Somos, Apr 01 2015 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ -x^12] (QPochhammer[ x^5, -x^12] QPochhammer[ -x^7, -x^12] + x QPochhammer[ -x, -x^12] QPochhammer[ x^11, -x^12]), {x, 0, n}]; (* Michael Somos, Apr 01 2015 *)
PROG
(PARI) {a(n) = my(m); if( issquare( 24*n + 1, &m), if( m%6 != 5, m = -m); m \= 6; (-1)^((-m) \ 4), 0)};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Feb 14 2012
STATUS
approved