This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A206959 Expansion of f(-x^5, x^7) + x * f(x, -x^11) in powers of x where f() is Ramanujan's two-variable theta function. 2
 1, 1, 1, 0, 0, -1, 0, 1, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). This is an example of the quintuple product identity in the form f(a*b^4, a^2/b) - (a/b) * f(a^4*b, b^2/a) = f(-a*b, -a^2*b^2) * f(-a/b, -b^2) / f(a, b) where a = x^3, b = -x. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Eric Weisstein's World of Mathematics, Ramanujan Theta Functions Eric Weisstein's World of Mathematics, Quintuple Product Identity FORMULA Expansion of f(x^4, -x^8) * f(-x^8,-x^8) / f(-x,x^3) in powers of x where f() is Ramanujan't two-variable theta function. Euler transform of period 16 sequence [ 1, 0, -1, 0, -1, 1, 1, -2, 1, 1, -1, 0, -1, 0, 1, -1, ...]. G.f.: Sum_{k in Z} (-1)^floor(k/2) * x^(k*(6*k - 2)) * (x^(3*k) - x^(-3*k + 1)). G.f.: Product_{k>0} (1 + (-1)^k * x^(4*k-1)) * (1 - (-1)^k * x^(4*k-3)) * (1 - (-1)^k * x^(4*k)) * (1 + x^(8*k-6)) * (1 + x^(8*k-2)). a(5*n + 3) = a(5*n + 4) = 0. |a(n)| = A080995(n). a(n) = (-1)^n * A206958(n). - Michael Somos, Apr 01 2015 EXAMPLE G.f. = 1 + x + x^2 - x^5 + x^7 - x^12 - x^15 - x^22 - x^26 - x^35 - x^40 + x^51 - ... G.f. = q + q^25 + q^49 - q^121 + q^169 - q^289 - q^361 - q^529 - q^625 - q^841 - ... MATHEMATICA a[ n_] := SeriesCoefficient[ Product[ (1 - x^k)^{-1, 0, 1, 0, 1, -1, -1, 2, -1, -1, 1, 0, 1, 0, -1, 1}[[Mod[k, 16, 1]]], {k, n}], {x, 0, n}]; (* Michael Somos, Apr 01 2015 *) a[ n_] := SeriesCoefficient[ QPochhammer[ -x^12] (QPochhammer[ x^5, -x^12] QPochhammer[ -x^7, -x^12] + x QPochhammer[ -x, -x^12] QPochhammer[ x^11, -x^12]), {x, 0, n}]; (* Michael Somos, Apr 01 2015 *) PROG (PARI) {a(n) = my(m); if( issquare( 24*n + 1, &m), if( m%6 != 5, m = -m); m \= 6; (-1)^((-m) \ 4), 0)}; CROSSREFS Cf. A080995, A206958. Sequence in context: A143062 A010815 A206958 * A080995 A121373 A199918 Adjacent sequences:  A206956 A206957 A206958 * A206960 A206961 A206962 KEYWORD sign AUTHOR Michael Somos, Feb 14 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 19 03:54 EDT 2019. Contains 325144 sequences. (Running on oeis4.)