|
|
A080995
|
|
Characteristic function of generalized pentagonal numbers A001318.
|
|
39
|
|
|
1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Repeatedly [1,[0,]^2k,1,[0,]^k], k>=0; characteristic function of generalized pentagonal numbers: a(A001318(n))=1, a(A090864(n))=0. - Reinhard Zumkeller, Apr 22 2006
Starting with offset 1 with 1's signed (++--++,...), i.e., (1, 1, 0, 0, -1, 0, -1, 0, ...); is the INVERTi transform of A000041 starting (1, 2, 3, 5, 7, 11, ...). - Gary W. Adamson, May 17 2013
Number 9 of the 14 primitive eta-products which are holomorphic modular forms of weight 1/2 listed by D. Zagier on page 30 of "The 1-2-3 of Modular Forms". - Michael Somos, May 04 2016
|
|
REFERENCES
|
P. A. MacMahon, Combinatory Analysis, Cambridge Univ. Press, London and New York, Vol. 1, 1915 and Vol. 2, 1916; see vol. 2, p. 81, Article 331.
|
|
LINKS
|
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1001 from T. D. Noe)
S. Cooper and M. D. Hirschhorn, Results of Hurwitz type for three squares. Discrete Math. 274 (2004), no. 1-3, 9-24. See P(q).
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Eric Weisstein's World of Mathematics, Jacobi Theta Functions
Index entries for characteristic functions
|
|
FORMULA
|
Expansion of phi(-x^3) / chi(-x) in powers of x where phi(), chi() are Ramanujan theta functions. - Michael Somos, Sep 14 2007
Expansion of psi(x) - x * psi(x^9) in powers of x^3 where psi() is a Ramanujan theta function. - Michael Somos, Sep 14 2007
Expansion of f(x, x^2) in powers of x where f() is Ramanujan's two-variable theta function.
Expansion of q^(-1/24) * eta(q^2) * eta(q^3)^2 / (eta(q) * eta(q^6)) in powers of q.
a(n) = b(24*n + 1) where b() is multiplicative with b(2^e) = b(3^e) = 0^e, b(p^e) = (1 + (-1)^e) / 2 if p>3. - Michael Somos, Jun 06 2005
Euler transform of period 6 sequence [ 1, 0, -1, 0, 1, -1, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (144 t)) = 2^(1/2) (t/i)^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A089810.
G.f.: Product_{k>0} (1 - x^(3*k)) / (1 - x^k + x^(2*k)). - Michael Somos, Jan 26 2008
G.f.: Sum x^(n*(3n+1)/2), n=-inf..inf [the exponents are the pentagonal numbers, A000326].
a(n) = |A010815(n)| = A089806(2*n) = A033683(24*n + 1).
For n > 0, a(n) = b(n) - b(n-1) + c(n) - c(n-1), where b(n) = floor(sqrt(2n/3+1/36)+1/6) (= A180447(n)) and c(n) = floor(sqrt(2n/3+1/36)-1/6) (= A085141(n)). - Mikael Aaltonen, Mar 08 2015
a(n) = (-1)^n * A133985(n). - Michael Somos, Jul 12 2015
a(n) = A000009(n) (mod 2). - John M. Campbell, Jun 29 2016
|
|
EXAMPLE
|
G.f. = 1 + x + x^2 + x^5 + x^7 + x^12 + x^15 + x^22 + x^26 + x^35 + x^40 + x^51 + ...
G.f. = q + q^25 + q^49 + q^121 + q^169 + q^289 + q^361 + q^529 + q^625 + ...
|
|
MATHEMATICA
|
a[ n_] := If[ n < 0, 0, SeriesCoefficient[ (Series[ EllipticTheta[ 3, Log[y] / (2 I), x^(3/2)], {x, 0, n + Floor@Sqrt[n]}] // Normal // TrigToExp) /. {y -> x^(1/2)}, {x, 0, n}]]; (* Michael Somos, Nov 18 2011 *)
a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x^3] / QPochhammer[ x, x^2], {x, 0, n}]; (* Michael Somos, Jun 08 2013 *)
a[ n_] := If[ n < 0, 0, Boole[ IntegerQ[ Sqrt[ 24 n + 1]]]]; (* Michael Somos, Jun 08 2013 *)
|
|
PROG
|
(PARI) {a(n) = if( n<0, 0, abs( polcoeff( eta(x + x * O(x^n)), n)))};
(PARI) {a(n) = issquare( 24*n + 1)}; /* Michael Somos, Apr 13 2005 */
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A)^2 / (eta(x + A) * eta(x^6 + A)), n))};
(Haskell)
a080995 = a033683 . (+ 1) . (* 24) -- Reinhard Zumkeller, Nov 14 2015
|
|
CROSSREFS
|
Cf. A001318 (support), A010815 (absolute values), A033683, A089806.
Cf. A000326, A180447, A085141, A133985.
Sequence in context: A010815 A206958 A206959 * A121373 A199918 A229894
Adjacent sequences: A080992 A080993 A080994 * A080996 A080997 A080998
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Michael Somos, Feb 27 2003
|
|
EXTENSIONS
|
Minor edits by N. J. A. Sloane, Feb 03 2012
|
|
STATUS
|
approved
|
|
|
|