login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Characteristic function of generalized pentagonal numbers A001318.
40

%I #98 Jan 13 2024 03:33:15

%S 1,1,1,0,0,1,0,1,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,

%T 0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,

%U 0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0

%N Characteristic function of generalized pentagonal numbers A001318.

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%C Repeatedly [1,[0,]^2k,1,[0,]^k], k>=0; characteristic function of generalized pentagonal numbers: a(A001318(n))=1, a(A090864(n))=0. - _Reinhard Zumkeller_, Apr 22 2006

%C Starting with offset 1 with 1's signed (++--++,...), i.e., (1, 1, 0, 0, -1, 0, -1, 0, ...); is the INVERTi transform of A000041 starting (1, 2, 3, 5, 7, 11, ...). - _Gary W. Adamson_, May 17 2013

%C Number 9 of the 14 primitive eta-products which are holomorphic modular forms of weight 1/2 listed by D. Zagier on page 30 of "The 1-2-3 of Modular Forms". - _Michael Somos_, May 04 2016

%D Percy A. MacMahon, Combinatory Analysis, Cambridge Univ. Press, London and New York, Vol. 1, 1915 and Vol. 2, 1916; see vol. 2, p. 81, Article 331.

%H Seiichi Manyama, <a href="/A080995/b080995.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..1001 from T. D. Noe)

%H S. Cooper and M. D. Hirschhorn, <a href="http://dx.doi.org/10.1016/S0012-365X(03)00079-7">Results of Hurwitz type for three squares.</a> Discrete Math. 274 (2004), no. 1-3, 9-24. See P(q).

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>, 2019.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/JacobiThetaFunctions.html">Jacobi Theta Functions</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>.

%H Don Zagier, <a href="http://dx.doi.org/10.1007/978-3-540-74119-0">Elliptic modular forms and their applications</a>, in "The 1-2-3 of modular forms", Springer-Verlag, 2008.

%H <a href="/index/Ch#char_fns">Index entries for characteristic functions</a>.

%F Expansion of phi(-x^3) / chi(-x) in powers of x where phi(), chi() are Ramanujan theta functions. - _Michael Somos_, Sep 14 2007

%F Expansion of psi(x) - x * psi(x^9) in powers of x^3 where psi() is a Ramanujan theta function. - _Michael Somos_, Sep 14 2007

%F Expansion of f(x, x^2) in powers of x where f() is Ramanujan's two-variable theta function.

%F Expansion of q^(-1/24) * eta(q^2) * eta(q^3)^2 / (eta(q) * eta(q^6)) in powers of q.

%F a(n) = b(24*n + 1) where b() is multiplicative with b(2^e) = b(3^e) = 0^e, b(p^e) = (1 + (-1)^e) / 2 if p>3. - _Michael Somos_, Jun 06 2005

%F Euler transform of period 6 sequence [ 1, 0, -1, 0, 1, -1, ...].

%F G.f. is a period 1 Fourier series which satisfies f(-1 / (144 t)) = 2^(1/2) (t/i)^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A089810.

%F G.f.: Product_{k>0} (1 - x^(3*k)) / (1 - x^k + x^(2*k)). - _Michael Somos_, Jan 26 2008

%F G.f.: Sum x^(n*(3n+1)/2), n=-inf..inf [the exponents are the pentagonal numbers, A000326].

%F a(n) = |A010815(n)| = A089806(2*n) = A033683(24*n + 1).

%F For n > 0, a(n) = b(n) - b(n-1) + c(n) - c(n-1), where b(n) = floor(sqrt(2n/3+1/36)+1/6) (= A180447(n)) and c(n) = floor(sqrt(2n/3+1/36)-1/6) (= A085141(n)). - _Mikael Aaltonen_, Mar 08 2015

%F a(n) = (-1)^n * A133985(n). - _Michael Somos_, Jul 12 2015

%F a(n) = A000009(n) (mod 2). - _John M. Campbell_, Jun 29 2016

%F Sum_{k=1..n} a(k) ~ c * sqrt(n), where c = 2*sqrt(2/3) = 1.632993... . - _Amiram Eldar_, Jan 13 2024

%e G.f. = 1 + x + x^2 + x^5 + x^7 + x^12 + x^15 + x^22 + x^26 + x^35 + x^40 + x^51 + ...

%e G.f. = q + q^25 + q^49 + q^121 + q^169 + q^289 + q^361 + q^529 + q^625 + ...

%t a[ n_] := If[ n < 0, 0, SeriesCoefficient[ (Series[ EllipticTheta[ 3, Log[y] / (2 I), x^(3/2)], {x, 0, n + Floor@Sqrt[n]}] // Normal // TrigToExp) /. {y -> x^(1/2)}, {x, 0, n}]]; (* _Michael Somos_, Nov 18 2011 *)

%t a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x^3] / QPochhammer[ x, x^2], {x, 0, n}]; (* _Michael Somos_, Jun 08 2013 *)

%t a[ n_] := If[ n < 0, 0, Boole[ IntegerQ[ Sqrt[ 24 n + 1]]]]; (* _Michael Somos_, Jun 08 2013 *)

%o (PARI) {a(n) = if( n<0, 0, abs( polcoeff( eta(x + x * O(x^n)), n)))};

%o (PARI) {a(n) = issquare( 24*n + 1)}; /* _Michael Somos_, Apr 13 2005 */

%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A)^2 / (eta(x + A) * eta(x^6 + A)), n))};

%o (Haskell)

%o a080995 = a033683 . (+ 1) . (* 24) -- _Reinhard Zumkeller_, Nov 14 2015

%Y Cf. A001318 (support), A010815 (absolute values), A033683, A089806.

%Y Cf. A000326, A180447, A085141, A133985.

%Y Cf. A000009, A000041, A000122, A000700, A010054, A090864, A121373.

%K nonn,easy

%O 0,1

%A _Michael Somos_, Feb 27 2003

%E Minor edits by _N. J. A. Sloane_, Feb 03 2012