The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A089806 Expansion of Jacobi theta function (theta_3(q^(1/3))-theta_2(q^3))/2/q^(1/12). 7
 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS Antti Karttunen, Table of n, a(n) for n = 0..10034 Eric Weisstein's World of Mathematics, Jacobi Theta Functions I. J. Zucker, Further Relations Amongst Infinite Series and Products. II. The Evaluation of Three-Dimensional Lattice Sums, J. Phys. A: Math. Gen. 23, 117-132, 1990. FORMULA Euler transform of period 12 sequence [0, 1, 0, 0, 0, -1, 0, 0, 0, 1, 0, -1, ...]. - Michael Somos, Apr 13 2005 a(n) = b(12n+1) where b(n) is multiplicative and b(3^e)=0^e, b(p^e)=(1+(-1)^e)/2 if p<>3. - Michael Somos, Jun 06 2005 Expansion of q^(-1/12)(eta(q^4)eta(q^6)^2)/(eta(q^2)eta(q^12)) in powers of q. EXAMPLE 1 + q^2 + q^4 + q^10 + q^14 + q^24 + q^30 + q^44 + q^52 + ... MATHEMATICA nmax = 100; CoefficientList[Series[Product[(1+x^(2*k)) * (1-x^(6*k)) / (1+x^(6*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 05 2016 *) PROG (PARI) a(n)=issquare(12*n+1) /* Michael Somos, Apr 13 2005 */ (PARI) lista(nn) = {q='q+O('q^nn); Vec(eta(q^4)*eta(q^6)^2/(eta(q^2)*eta(q^12)))} \\ Altug Alkan, Mar 22 2018 CROSSREFS Cf. A080995(n)=a(2n). Sequence in context: A014165 A014141 A014093 * A274719 A014069 A154388 Adjacent sequences:  A089803 A089804 A089805 * A089807 A089808 A089809 KEYWORD nonn AUTHOR Eric W. Weisstein, Nov 12 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 7 12:08 EDT 2022. Contains 355148 sequences. (Running on oeis4.)