login
A089806
Expansion of Jacobi theta function (theta_3(q^(1/3))-theta_2(q^3))/2/q^(1/12).
7
1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
0,1
FORMULA
Euler transform of period 12 sequence [0, 1, 0, 0, 0, -1, 0, 0, 0, 1, 0, -1, ...]. - Michael Somos, Apr 13 2005
a(n) = b(12n+1) where b(n) is multiplicative and b(3^e)=0^e, b(p^e)=(1+(-1)^e)/2 if p<>3. - Michael Somos, Jun 06 2005
Expansion of q^(-1/12)(eta(q^4)eta(q^6)^2)/(eta(q^2)eta(q^12)) in powers of q.
Sum_{k=1..n} a(k) ~ c * sqrt(n), where c = 2/sqrt(3) = 1.1547005... (10 * A020832). - Amiram Eldar, Dec 29 2023
EXAMPLE
1 + q^2 + q^4 + q^10 + q^14 + q^24 + q^30 + q^44 + q^52 + ...
MATHEMATICA
nmax = 100; CoefficientList[Series[Product[(1+x^(2*k)) * (1-x^(6*k)) / (1+x^(6*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 05 2016 *)
Table[If[IntegerQ[Sqrt[12*n + 1]], 1, 0], {n, 0, 100}] (* Vaclav Kotesovec, Dec 29 2023 *)
PROG
(PARI) a(n)=issquare(12*n+1) /* Michael Somos, Apr 13 2005 */
(PARI) lista(nn) = {q='q+O('q^nn); Vec(eta(q^4)*eta(q^6)^2/(eta(q^2)*eta(q^12)))} \\ Altug Alkan, Mar 22 2018
CROSSREFS
Cf. A080995(n) = a(2n).
Cf. A020832.
Sequence in context: A014141 A014093 A373601 * A274719 A014069 A154388
KEYWORD
nonn,easy,changed
AUTHOR
Eric W. Weisstein, Nov 12 2003
STATUS
approved