login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274719
Expansion of Product_{k >= 1} (1-q^(2*k)).
4
1, 0, -1, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
OFFSET
0
COMMENTS
Convolution of A000009 and A010815.
FORMULA
Equals convolution inverse of A035363.
a(2n) = A010815(n).
Conjecture: |a(n)| = A089806(n).
EXAMPLE
G.f. = 1 - x^2 - x^4 + x^10 + x^14 - x^24 - x^30 + x^44 + x^52 - x^70 - ... - Altug Alkan, Mar 24 2018
MATHEMATICA
nmax = 100; CoefficientList[ Series[Product[(1 - x^(2*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 05 2016 *)
PROG
(PARI) lista(nn) = {q='q+O('q^nn); Vec(eta(q^2))} \\ Altug Alkan, Mar 21 2018
CROSSREFS
KEYWORD
sign
AUTHOR
George Beck, Jul 03 2016
EXTENSIONS
Simpler definition from N. J. A. Sloane, Mar 24 2018
STATUS
approved