login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A274719 Expansion of Product_{k >= 1} (1-q^(2*k)). 0
1, 0, -1, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0

COMMENTS

Convolution of A000009 and A010815.

LINKS

Table of n, a(n) for n=0..102.

FORMULA

Equals convolution inverse of A035363.

a(2n) = A010815(n).

Conjecture: |a(n)| = A089806(n).

EXAMPLE

G.f. = 1 - x^2 - x^4 + x^10 + x^14 - x^24 - x^30 + x^44 + x^52 - x^70 - ... - Altug Alkan, Mar 24 2018

MATHEMATICA

nmax = 100; CoefficientList[ Series[Product[(1 - x^(2*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 05 2016 *)

PROG

(PARI) lista(nn) = {q='q+O('q^nn); Vec(eta(q^2))} \\ Altug Alkan, Mar 21 2018

CROSSREFS

Cf. A000009, A010815, A035363, A089806.

Sequence in context: A014141 A014093 A089806 * A014069 A154388 A285136

Adjacent sequences:  A274716 A274717 A274718 * A274720 A274721 A274722

KEYWORD

sign

AUTHOR

George Beck, Jul 03 2016

EXTENSIONS

Simpler definition from N. J. A. Sloane, Mar 24 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 29 01:41 EDT 2022. Contains 354122 sequences. (Running on oeis4.)