login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274717
G.f. satisfies: A(x) = A(x^2) + sqrt( A(x^2) ), where A(x) = Sum_{n>=1} a(n) * x^n / 2^A274716(n).
4
1, 1, 1, 1, 1, 1, 7, 1, -21, 1, 71, 1, 5, 7, 1095, 1, -15885, -21, 18443, 1, -55841, 71, 324945, 1, -2649857, 5, 6109987, 7, -18206579, 1095, 92290439, 1, -3700779069, -15885, 5957604211, -21, -29227819205, 18443, 88113645133, 1, -917331711003, -55841, 2134630503193, 71, -9943308217037, 324945, 29285764343377, 1, -616425445539209, -2649857, 1440419971225759, 5, -7198783835108021, 6109987, 19846350459729237
OFFSET
1,7
LINKS
FORMULA
a(2*n) = a(n) for n>=1.
EXAMPLE
G.f.: A(x) = x + x^2 + 1/2*x^3 + x^4 + 1/8*x^5 + 1/2*x^6 + 7/16*x^7 + x^8 - 21/128*x^9 + 1/8*x^10 + 71/256*x^11 + 1/2*x^12 + 5/1024*x^13 + 7/16*x^14 + 1095/2048*x^15 + x^16 - 15885/32768*x^17 - 21/128*x^18 + 18443/65536*x^19 + 1/8*x^20 - 55841/262144*x^21 + 71/256*x^22 + 324945/524288*x^23 + 1/2*x^24 - 2649857/4194304*x^25 + 5/1024*x^26 + 6109987/8388608*x^27 + 7/16*x^28 - 18206579/33554432*x^29 + 1095/2048*x^30 + 92290439/67108864*x^31 + x^32 +...+ a(n)*x^n/2^A274716(n) +...
such that ( A(x) - A(x^2) )^2 = A(x^2).
RELATED SERIES.
The following series forms an odd function:
A(x) - A(x^2) = x + 1/2*x^3 + 1/8*x^5 + 7/16*x^7 - 21/128*x^9 + 71/256*x^11 + 5/1024*x^13 + 1095/2048*x^15 - 15885/32768*x^17 + 18443/65536*x^19 - 55841/262144*x^21 + 324945/524288*x^23 - 2649857/4194304*x^25 + 6109987/8388608*x^27 - 18206579/33554432*x^29 +...
where ( A(x) - A(x^2) )^2 = A(x^2):
(A(x) - A(x^2))^2 = x^2 + x^4 + 1/2*x^6 + x^8 + 1/8*x^10 + 1/2*x^12 + 7/16*x^14 + x^16 - 21/128*x^18 + 1/8*x^20 + 71/256*x^22 + 1/2*x^24 + 5/1024*x^26 + 7/16*x^28 + 1095/2048*x^30 + x^32 +...
PROG
(PARI) {A274716(n) = if(n<3, 0, if(n%2==0, A274716(n/2), A274716(2*(n\4)+1) + n\2 ) )}
{a(n) = my(A=x+x^2); for(i=0, #binary(n),
A = subst(A, x, x^2) + sqrt( subst(A, x, x^2 +x^2*O(x^n)) ) );
2^A274716(n)*polcoeff(A, n)}
for(n=1, 65, print1(a(n), ", "))
CROSSREFS
Cf. A274716.
Sequence in context: A229823 A229824 A229825 * A050310 A178445 A019431
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jul 07 2016
STATUS
approved