login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274714
G.f. A(x) satisfies: A(x) = x + A(x)^2 - R(A(x)^2) + sqrt( A(x)^2 - R(A(x)^2) ), where R(A(x)) = x, and A(x) = Sum_{n>=1} a(n)*x^n/2^A274715(n).
2
1, 1, 2, 6, 20, 141, 260, 1985, 3887, 124213, 63013, 2072737, 4308063, 72299423, 19110234, 1302089975, 2789327371, 192236392547, 13000018109, 3616336753079, 7889633483913, 138181586307115, 37935218826111, 2673839246416983, 5905195803386319, 209178924613512833, 58019641542960071, 4128415092111144721, 9197893555411205235, 164237433151443645047, 11474995858629174895, 3289139509736729288671, 7376472520390786310211, 1060236793997777905833443, 74507380484700694744045, 21473133267770763414163167
OFFSET
1,3
LINKS
FORMULA
Given g.f. A(x) = Sum_{n>=1} a(n)*x^n / 2^A274715(n), then A(x) satisfies:
(1) A(x) = x + G( A(x)^4 ) + sqrt( G( A(x)^4 ) ), where G( A(x)^2 ) = A(x) - x, and G(x) is the g.f. described by A274717.
(2) A(x) = limit (F_{n} - x)^(1/2^n), where F_{n+1} = x + (F_{n+1} - F_{n})^2, starting with F_1 = A(x).
EXAMPLE
G.f.: A(x) = x + x^2 + 2*x^3 + 6*x^4 + 20*x^5 + 141/2*x^6 + 260*x^7 + 1985/2*x^8 + 3887*x^9 + 124213/8*x^10 + 63013*x^11 + 2072737/8*x^12 + 4308063/4*x^13 + 72299423/16*x^14 + 19110234*x^15 + 1302089975/16*x^16 + 2789327371/8*x^17 + 192236392547/128*x^18 + 13000018109/2*x^19 + 3616336753079/128*x^20 + 7889633483913/64*x^21 + 138181586307115/256*x^22 + 37935218826111/16*x^23 + 2673839246416983/256*x^24 + 5905195803386319/128*x^25 + 209178924613512833/1024*x^26 + 58019641542960071/64*x^27 + 4128415092111144721/1024*x^28 + 9197893555411205235/512*x^29 + 164237433151443645047/2048*x^30 + 11474995858629174895/32*x^31 + 3289139509736729288671/2048*x^32 +...+ a(n)*x^n/2^A274715(n) +...
such that A(x) = x + A(x)^2 - R(A(x)^2) + sqrt(A(x)^2 - R(A(x)^2)), where R(A(x)) = x.
RELATED SERIES.
Let G(x) satisfy: (G(x) - G(x^2))^2 = G(x^2), where
G(x) = x + x^2 + 1/2*x^3 + x^4 + 1/8*x^5 + 1/2*x^6 + 7/16*x^7 + x^8 - 21/128*x^9 + 1/8*x^10 + 71/256*x^11 + 1/2*x^12 + 5/1024*x^13 + 7/16*x^14 + 1095/2048*x^15 + x^16 +...+ A274717(n)*x^n/2^A274716(n) +...
then the series reversion of A(x) equals x - G(x^2) and begins:
x - G(x^2) = x - x^2 - x^4 - 1/2*x^6 - x^8 - 1/8*x^10 - 1/2*x^12 - 7/16*x^14 - x^16 + 21/128*x^18 - 1/8*x^20 - 71/256*x^22 - 1/2*x^24 - 5/1024*x^26 - 7/16*x^28 - 1095/2048*x^30 - x^32 +...+ -A274717(n)*x^(2*n)/2^A274716(n) +...
Also, A(x) = x + G(A(x)^4) + sqrt( G(A(x)^4) ).
AS THE LIMIT OF AN ITERATED PROCESS.
If we start with F1 = A(x), and define functions F_{n} that satisfy:
(1) F2 = x + (F2 - F1)^2
(2) F3 = x + (F3 - F2)^2
(3) F4 = x + (F4 - F3)^2
and continue in this way,
F_{n+1} = x + (F_{n+1} - F_{n})^2,
then
limit (F_{n} - x)^(1/2^n) = A(x).
The initial functions described above begin:
(1) F2 = x + x^4 + 4*x^5 + 14*x^6 + 52*x^7 + 202*x^8 + 802*x^9 + 3234*x^10 + 13220*x^11 + 109357/2*x^12 + 456813/2*x^13 + 962236*x^14 + 4083620*x^15 + 17442222*x^16 +...
(2) F3 = x + x^8 + 8*x^9 + 44*x^10 + 216*x^11 + 1014*x^12 + 4652*x^13 + 21064*x^14 + 94664*x^15 + 423658*x^16 + 1891885*x^17 + 8440218*x^18 + 37646850*x^19 +...
(3) F4 = x + x^16 + 16*x^17 + 152*x^18 + 1136*x^19 + 7420*x^20 + 44536*x^21 + 252448*x^22 + 1373776*x^23 + 7253430*x^24 + 37426586*x^25 + 189685596*x^26 +...
where the limit of the roots approach g.f. A(x):
(1) (F2 - x)^(1/4) = x + x^2 + 2*x^3 + 6*x^4 + 81/4*x^5 + 287/4*x^6 + 265*x^7 + 2025/2*x^8 +...
(2) (F3 - x)^(1/8) = x + x^2 + 2*x^3 + 6*x^4 + 20*x^5 + 141/2*x^6 + 260*x^7 + 1985/2*x^8 + 31097/8*x^9 +...
(3) (F4 - x)^(1/16) = x + x^2 + 2*x^3 + 6*x^4 + 20*x^5 + 141/2*x^6 + 260*x^7 + 1985/2*x^8 + 3887*x^9 +...
etc.
PROG
(PARI) {a(n) = my(A=x+x^2, R=x); for(i=1, n,
R = serreverse(A + x^2*O(x^n));
A = x + A^2 - subst(R, x, A^2) + sqrt(A^2 - subst(R, x, A^2)) );
numerator(polcoeff(A, n))}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 08 2016
STATUS
approved