OFFSET
0,2
FORMULA
a(n) = (1/n)*Sum_{k=1..n} 2^floor(k^2/2+1) * a(n-k) for n>0, with a(0)=1.
EXAMPLE
G.f.: A(x) = 1 + 2*x + 6*x^2 + 20*x^3 + 166*x^4 + 1980*x^5 + 91612*x^6 +...
log(A(x)) = 2*x + 2^3*x^2/2 + 2^5*x^3/3 + 2^9*x^4/4 + 2^13*x^5/5 + 2^19*x^6/6 +...
PROG
(PARI) {a(n)=polcoeff(exp(sum(k=1, n, 2^floor(k^2/2+1)*x^k/k)+x*O(x^n)), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 10 2009
STATUS
approved