login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156340
G.f.: A(x) = exp( Sum_{n>=1} 2^(n^2-n+1) * x^n/n ), a power series in x with integer coefficients.
2
1, 2, 6, 52, 2150, 423804, 358766428, 1257303170984, 18016913850523398, 1049450810327077624300, 247590106794776589832254260, 236013988752078034604114551553880, 907420117150975291421488593816623266780, 14052902173791695936955751957273562543384799320
OFFSET
0,2
LINKS
FORMULA
a(n) = (1/n)*Sum_{k=1..n} 2^(k^2-k+1) * a(n-k) for n>0, with a(0)=1.
a(n) ~ 2^(n^2 - n + 1) / n. - Vaclav Kotesovec, Oct 07 2020
EXAMPLE
G.f.: A(x) = 1 + 2*x + 6*x^2 + 52*x^3 + 2150*x^4 + 423804*x^5 + ...
log(A(x)) = 2*x + 2^3*x^2/2 + 2^7*x^3/3 + 2^13*x^4/4 + 2^21*x^5/5 + 2^31*x^6/6 + ...
PROG
(PARI) {a(n)=polcoeff(exp(sum(k=1, n, 2^(k^2-k+1)*x^k/k)+x*O(x^n)), n)}
for(n=0, 15, print1(a(n), ", "))
(PARI) {a(n)=if(n==0, 1, (1/n)*sum(k=1, n, 2^(k^2-k+1)*a(n-k)))}
for(n=0, 15, print1(a(n), ", "))
CROSSREFS
Cf. A155200.
Sequence in context: A277477 A357243 A277363 * A337510 A259553 A327425
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 08 2009
EXTENSIONS
Terms a(12) and beyond from Andrew Howroyd, Jan 05 2020
STATUS
approved