The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A156340 G.f.: A(x) = exp( Sum_{n>=1} 2^(n^2-n+1) * x^n/n ), a power series in x with integer coefficients. 2
 1, 2, 6, 52, 2150, 423804, 358766428, 1257303170984, 18016913850523398, 1049450810327077624300, 247590106794776589832254260, 236013988752078034604114551553880, 907420117150975291421488593816623266780, 14052902173791695936955751957273562543384799320 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Andrew Howroyd, Table of n, a(n) for n = 0..50 FORMULA a(n) = (1/n)*Sum_{k=1..n} 2^(k^2-k+1) * a(n-k) for n>0, with a(0)=1. a(n) ~ 2^(n^2 - n + 1) / n. - Vaclav Kotesovec, Oct 07 2020 EXAMPLE G.f.: A(x) = 1 + 2*x + 6*x^2 + 52*x^3 + 2150*x^4 + 423804*x^5 + ... log(A(x)) = 2*x + 2^3*x^2/2 + 2^7*x^3/3 + 2^13*x^4/4 + 2^21*x^5/5 + 2^31*x^6/6 + ... PROG (PARI) {a(n)=polcoeff(exp(sum(k=1, n, 2^(k^2-k+1)*x^k/k)+x*O(x^n)), n)} for(n=0, 15, print1(a(n), ", ")) (PARI) {a(n)=if(n==0, 1, (1/n)*sum(k=1, n, 2^(k^2-k+1)*a(n-k)))} for(n=0, 15, print1(a(n), ", ")) CROSSREFS Cf. A155200. Sequence in context: A277477 A357243 A277363 * A337510 A259553 A327425 Adjacent sequences: A156337 A156338 A156339 * A156341 A156342 A156343 KEYWORD nonn AUTHOR Paul D. Hanna, Feb 08 2009 EXTENSIONS Terms a(12) and beyond from Andrew Howroyd, Jan 05 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 17 12:34 EDT 2024. Contains 374377 sequences. (Running on oeis4.)