login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277363
Self-convolution of a(n)/4^n gives fibonorials (A003266).
0
1, 2, 6, 52, 646, 13756, 458780, 24525352, 2094232006, 287618113900, 63647556127412, 22739228686869592, 13126310109506278556, 12250085882856201785816, 18488349380363585366790264, 45134497176992058331312333648, 178246891228174428563552421395782
OFFSET
0,2
COMMENTS
Self-convolution of a(n) gives A003266(n)*4^n.
FORMULA
Sum_{k=0..n} a(k)/4^k * a(n-k)/4^(n-k) = A003266(n).
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, (4^n
*mul((<<0|1>, <1|1>>^i)[1, 2], i=1..n)-
add(a(k)*a(n-k), k=1..n-1))/2)
end:
seq(a(n), n=0...20); # Alois P. Heinz, Oct 12 2016
MATHEMATICA
With[{n = 20}, Sqrt[Sum[Fibonorial[k] (4 x)^k, {k, 0, n - 1}] + O[x]^n][[3]]] (* before version 10.0 define Fibonorial[n_] := Product[Fibonacci[k], {k, 1, n}] *)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved