OFFSET
1,1
COMMENTS
Are there infinitely many such numbers?
Such k must be a Carmichael number since phi(k)*lambda(k) = m*lambda(k)^2 for some integer m. - Nathan McNew, Oct 11 2016
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..115 (terms below 10^22, calculated using data from Claude Goutier)
MATHEMATICA
Select[Range[10^8], CompositeQ[#] && Divisible[(# - 1)^2, EulerPhi[#] * CarmichaelLambda[#]] &] (* Amiram Eldar, Feb 02 2019 *)
PROG
(PARI) lista(nn) = forcomposite(n=4, nn, if (((n-1)^2 % (eulerphi(n)*lcm(znstar(n)[2]))) == 0, print1(n, ", ")); ); \\ Michel Marcus, Oct 11 2016
(PARI) is(n, f=factor(n))=(n-1)^2%(eulerphi(f)*lcm(znstar(f)[2])) == 0 && !isprime(n) && n>1 \\ Charles R Greathouse IV, Oct 11 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Thomas Ordowski, Oct 11 2016
EXTENSIONS
a(2)-a(3) from Michel Marcus, Oct 11 2016
a(4)-a(8) from Charles R Greathouse IV, Oct 11 2016
a(9)-a(13) from David A. Corneth, Oct 11 2016
More terms from Amiram Eldar, Feb 02 2019
STATUS
approved