login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327787
a(n) is the smallest Carmichael number k such that gpf(p-1) = prime(n) for all prime factors p of k.
1
1729, 252601, 1152271, 1615681, 4335241, 172947529, 214852609, 79624621, 178837201, 775368901, 686059921, 985052881, 5781222721, 10277275681, 84350561, 5255104513, 492559141, 74340674101, 9293756581, 1200778753, 129971289169, 2230305949, 851703301, 8714965001, 6693621481
OFFSET
2,1
COMMENTS
The first term is the Hardy-Ramanujan number. - Omar E. Pol, Nov 25 2019
LINKS
Amiram Eldar, Table of n, a(n) for n = 2..2905 (calculated using data from Claude Goutier; terms 2..831 from Daniel Suteu)
Daniel Suteu, Terms and upper bounds for n = 2..10000 (values greater than 2^64 are upper bounds).
Eric Weisstein's World of Mathematics, Carmichael Number.
EXAMPLE
a(2) = 1729 = (2*3 + 1)(2*2*3 + 1)(2*3*3 + 1).
a(3) = 252601 = (2*2*2*5 + 1)(2*2*3*5 + 1)(2*2*5*5 + 1).
a(4) = 1152271 = (2*3*7 + 1)(2*3*3*7 + 1)(2*3*5*7 + 1).
a(5) = 1615681 = (2*11 + 1)(2*3*3*11 + 1)(2*2*2*2*2*11 + 1).
MATHEMATICA
carmQ[n_] := CompositeQ[n] && Divisible[n - 1, CarmichaelLambda[n]]; gpf[n_] := FactorInteger[n][[-1, 1]]; g[n_] := If[Length[(u = Union[gpf /@ (FactorInteger[n][[;; , 1]] - 1)])] == 1, u[[1]], 1]; m = 5; c = 0; k = 0; v = Table[0, {m}]; While[c < m, k++ If[! carmQ[k], Continue[]]; If[(p = g[k]) > 1, i = PrimePi[p] - 1; If[i <= m && v[[i]] == 0, c++; v[[i]] = k]]]; v (* Amiram Eldar, Oct 08 2019 *)
PROG
(Perl) use ntheory ":all"; sub a { my $p = nth_prime(shift); for(my $k = 1; ; ++$k) { return $k if (is_carmichael($k) and vecall { (factor($_-1))[-1] == $p } factor($k)) } }
for my $n (2..10) { print "a($n) = ", a($n), "\n" }
CROSSREFS
Cf. A002997 (Carmichael numbers), A006530 (gpf), A001235.
Sequence in context: A317126 A318646 A182087 * A352970 A033502 A277366
KEYWORD
nonn
AUTHOR
Daniel Suteu, Sep 25 2019
STATUS
approved