OFFSET
1,2
COMMENTS
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
EXAMPLE
The sequence of terms together with their prime indices begins:
1: {}
15: {2,3}
33: {2,5}
35: {3,4}
51: {2,7}
55: {3,5}
66: {1,2,5}
69: {2,9}
70: {1,3,4}
77: {4,5}
85: {3,7}
91: {4,6}
93: {2,11}
95: {3,8}
99: {2,2,5}
102: {1,2,7}
105: {2,3,4}
110: {1,3,5}
119: {4,7}
123: {2,13}
132: {1,1,2,5}
MAPLE
q:= n-> (l-> is(ilcm(l[])>add(j, j=l)))(map(i->
numtheory[pi](i[1])$i[2], ifactors(n)[2])):
select(q, [$1..250])[]; # Alois P. Heinz, Sep 27 2019
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[2, 100], LCM@@primeMS[#]>Total[primeMS[#]]&]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 25 2019
STATUS
approved