OFFSET
1,1
COMMENTS
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
EXAMPLE
The sequence of terms together with their prime indices begins:
4: {1,1}
6: {1,2}
8: {1,1,1}
9: {2,2}
10: {1,3}
12: {1,1,2}
14: {1,4}
16: {1,1,1,1}
18: {1,2,2}
20: {1,1,3}
21: {2,4}
22: {1,5}
24: {1,1,1,2}
25: {3,3}
26: {1,6}
27: {2,2,2}
28: {1,1,4}
32: {1,1,1,1,1}
34: {1,7}
36: {1,1,2,2}
MAPLE
q:= n-> (l-> is(ilcm(l[])<add(j, j=l)))(map(i->
numtheory[pi](i[1])$i[2], ifactors(n)[2])):
select(q, [$1..120])[]; # Alois P. Heinz, Sep 27 2019
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[2, 100], LCM@@primeMS[#]<Total[primeMS[#]]&]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 25 2019
STATUS
approved