The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A327776 Heinz numbers of integer partitions whose LCM is less than their sum. 4
 4, 6, 8, 9, 10, 12, 14, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 32, 34, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 52, 54, 56, 57, 58, 60, 62, 63, 64, 65, 68, 72, 74, 75, 76, 78, 80, 81, 82, 84, 86, 87, 88, 90, 92, 94, 96, 98, 100, 104, 106, 108, 111, 112 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). LINKS EXAMPLE The sequence of terms together with their prime indices begins:     4: {1,1}     6: {1,2}     8: {1,1,1}     9: {2,2}    10: {1,3}    12: {1,1,2}    14: {1,4}    16: {1,1,1,1}    18: {1,2,2}    20: {1,1,3}    21: {2,4}    22: {1,5}    24: {1,1,1,2}    25: {3,3}    26: {1,6}    27: {2,2,2}    28: {1,1,4}    32: {1,1,1,1,1}    34: {1,7}    36: {1,1,2,2} MAPLE q:= n-> (l-> is(ilcm(l[])       numtheory[pi](i[1])\$i[2], ifactors(n)[2])): select(q, [\$1..120])[];  # Alois P. Heinz, Sep 27 2019 MATHEMATICA primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]]; Select[Range[2, 100], LCM@@primeMS[#]

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 14 15:19 EDT 2021. Contains 345025 sequences. (Running on oeis4.)