OFFSET
0,2
COMMENTS
Sum_{k>=1} 1/(k*(k+1)) = 1
Sum_{k>=1} 1/(k*(k+1))^2 = -3 + Pi^2/3
Sum_{k>=1} 1/(k*(k+1))^3 = 10 - Pi^2
Sum_{k>=1} 1/(k*(k+1))^4 = -35 + 10*Pi^2/3 + Pi^4/45
Sum_{k>=1} 1/(k*(k+1))^5 = 126 - 35*Pi^2/3 - Pi^4/9
Sum_{k>=1} 1/(k*(k+1))^6 = -462 + 42*Pi^2 + 7*Pi^4/15 + 2*Pi^6/945
Sum_{k>=1} 1/(k*(k+1))^7 = 1716 - 154*Pi^2 - 28*Pi^4/15 - 2*Pi^6/135
Sum_{k>=1} 1/(k*(k+1))^8 = -6435 + 572*Pi^2 + 22*Pi^4/3 + 8*Pi^6/105 + Pi^8/4725
Sum_{k>=1} 1/(k*(k+1))^9 = 24310 - 2145*Pi^2 - 143*Pi^4/5 - 22*Pi^6/63 - Pi^8/525
Sum_{k>=1} 1/(k*(k+1))^10 = -92378 + 24310*Pi^2/3 + 1001*Pi^4/9 + 286*Pi^6/189 + 11*Pi^8/945 + 2*Pi^10/93555
In general, for s > 1, Sum_{k>=1} 1/(k*(k+1))^s = (-1)^s * (-binomial(2*s-1, s-1) + Sum_{j=1..floor(s/2)} ((-1)^(j+1) * binomial(2*s-2*j-1, s-1) * Bernoulli(2*j) * (2*Pi)^(2*j) / (2*j)!).
Equivalently, for s > 1, Sum_{k>=1} 1/(k*(k+1))^s = (-1)^s * (-binomial(2*s-1, s-1) + 2*Sum_{j=1..floor(s/2)} (binomial(2*s-2*j-1, s-1) * zeta(2*j)).
LINKS
R. J. Mathar, Tighly circumscribed regular polygons, arXiv:1301.6293 (2013), see Appendix.
Eric Weisstein's World of Mathematics, Bernoulli Number
Eric Weisstein's World of Mathematics, Riemann zeta function
FORMULA
Equals Pi^4/45 + 10*Pi^2/3 - 35.
EXAMPLE
0.06332780438680511248031072600283958992849992797342257007711701828839...
MAPLE
evalf(sum(1/(k*(k+1))^4, k=1..infinity), 120);
MATHEMATICA
RealDigits[N[Sum[1/(k*(k + 1))^4, {k, 1, Infinity}], 105]][[1]]
PROG
(PARI) suminf(k=1, 1/(k*(k+1))^4)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, Sep 25 2019
STATUS
approved