OFFSET
1,1
COMMENTS
El-Sedy and Siksek show that there exist arbitrarily long runs of consecutive integers that are happy numbers. So this sequence contains arbitrarily long runs of 1's.
LINKS
E. El-Sedy and S. Siksek, On happy numbers, Rocky Mountain J. Math. 30 (2000), 565-570.
MATHEMATICA
happyQ[n_] := NestWhile[Plus @@ (IntegerDigits[#]^2) &, n, UnsameQ, All] == 1; Differences @ Select[Range[700], happyQ] (* Amiram Eldar, Aug 06 2022 *)
PROG
(Python)
from itertools import count, islice
def ssd(n): return sum(int(d)**2 for d in str(n))
def ok(n):
while n not in [1, 4]: n = ssd(n) # iterate until fixed point/cycle
return n==1
def agen(): # generator of terms
prevk = 1
for k in count(2):
if ok(k): yield k - prevk; prevk = k
print(list(islice(agen(), 88))) # Michael S. Branicky, Aug 06 2022
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Darío D. Devia, Aug 05 2022
STATUS
approved