login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A145426
Decimal expansion of Sum_{k>=0} (k!/(k+2)!)^2.
8
2, 8, 9, 8, 6, 8, 1, 3, 3, 6, 9, 6, 4, 5, 2, 8, 7, 2, 9, 4, 4, 8, 3, 0, 3, 3, 3, 2, 9, 2, 0, 5, 0, 3, 7, 8, 4, 3, 7, 8, 9, 9, 8, 0, 2, 4, 1, 3, 5, 9, 6, 8, 7, 5, 4, 7, 1, 1, 1, 6, 4, 5, 8, 7, 4, 0, 0, 1, 4, 9, 4, 0, 8, 0, 6, 4, 0, 1, 7, 4, 7, 6, 6, 7, 2, 5, 7, 8, 0, 1, 2, 3, 9
OFFSET
0,1
REFERENCES
Alexander Apelblat, Tables of Integrals and Series, Harri Deutsch, (1996), 4.1.31.
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.19 Vallée's Constant, p. 161.
LINKS
R. J. Mathar, Tightly circumscribed regular polygons, arXiv:1301.6293 [math.MG], 2013, value (A15).
FORMULA
Equals A002388/3-3 = Sum_{n>=1} 1/A002378(n)^2 = Sum_{n>=2} 1/A035287(n).
EXAMPLE
0.28986813369645287294483...
MAPLE
evalf(1/3*Pi^2-3) ;
MATHEMATICA
RealDigits[Pi^2/3 - 3, 10, 120][[1]] (* Amiram Eldar, Jun 17 2023 *)
PROG
(PARI) Pi^2/3-3 \\ Seiichi Manyama, Dec 09 2021
(PARI) sumnumrat(1/(x^4 + 2*x^3 + x^2), 1) \\ Charles R Greathouse IV, Jan 20 2022
CROSSREFS
Cf. A002388 (Pi^2), A002378 (oblong numbers), A035287, A348670.
Sequence in context: A081819 A296850 A021349 * A200499 A298525 A350762
KEYWORD
cons,easy,nonn
AUTHOR
R. J. Mathar, Feb 08 2009
STATUS
approved