Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Jun 17 2023 03:06:25
%S 2,8,9,8,6,8,1,3,3,6,9,6,4,5,2,8,7,2,9,4,4,8,3,0,3,3,3,2,9,2,0,5,0,3,
%T 7,8,4,3,7,8,9,9,8,0,2,4,1,3,5,9,6,8,7,5,4,7,1,1,1,6,4,5,8,7,4,0,0,1,
%U 4,9,4,0,8,0,6,4,0,1,7,4,7,6,6,7,2,5,7,8,0,1,2,3,9
%N Decimal expansion of Sum_{k>=0} (k!/(k+2)!)^2.
%D Alexander Apelblat, Tables of Integrals and Series, Harri Deutsch, (1996), 4.1.31.
%D Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.19 Vallée's Constant, p. 161.
%H R. J. Mathar, <a href="http://arxiv.org/abs/1301.6293">Tightly circumscribed regular polygons</a>, arXiv:1301.6293 [math.MG], 2013, value (A15).
%F Equals A002388/3-3 = Sum_{n>=1} 1/A002378(n)^2 = Sum_{n>=2} 1/A035287(n).
%e 0.28986813369645287294483...
%p evalf(1/3*Pi^2-3) ;
%t RealDigits[Pi^2/3 - 3, 10, 120][[1]] (* _Amiram Eldar_, Jun 17 2023 *)
%o (PARI) Pi^2/3-3 \\ _Seiichi Manyama_, Dec 09 2021
%o (PARI) sumnumrat(1/(x^4 + 2*x^3 + x^2), 1) \\ _Charles R Greathouse IV_, Jan 20 2022
%Y Cf. A002388 (Pi^2), A002378 (oblong numbers), A035287, A348670.
%K cons,easy,nonn
%O 0,1
%A _R. J. Mathar_, Feb 08 2009