OFFSET
1,1
COMMENTS
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..1000
EXAMPLE
The sequence of terms together with their prime indices begins:
154: {1,4,5}
190: {1,3,8}
435: {2,3,10}
580: {1,1,3,10}
714: {1,2,4,7}
952: {1,1,1,4,7}
1118: {1,6,14}
1287: {2,2,5,6}
1430: {1,3,5,6}
1653: {2,8,10}
1716: {1,1,2,5,6}
1815: {2,3,5,5}
1935: {2,2,3,14}
2067: {2,6,16}
2150: {1,3,3,14}
2204: {1,1,8,10}
2254: {1,4,4,9}
2288: {1,1,1,1,5,6}
2415: {2,3,4,9}
2475: {2,2,3,3,5}
MAPLE
q:= n-> (l-> is(ilcm(l[])=2*add(j, j=l)))(map(i->
numtheory[pi](i[1])$i[2], ifactors(n)[2])):
select(q, [$1..10000])[]; # Alois P. Heinz, Sep 27 2019
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[2, 1000], LCM@@primeMS[#]==2*Total[primeMS[#]]&]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 25 2019
STATUS
approved