The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A074761 Number of partitions of n of order n. 37
 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 9, 1, 4, 5, 1, 1, 12, 1, 27, 7, 6, 1, 81, 1, 7, 1, 54, 1, 407, 1, 1, 11, 9, 13, 494, 1, 10, 13, 423, 1, 981, 1, 137, 115, 12, 1, 1309, 1, 59, 17, 193, 1, 240, 21, 1207, 19, 15, 1, 47274, 1, 16, 239, 1, 25, 3284, 1, 333, 23, 3731, 1, 42109, 1, 19 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,6 COMMENTS Order of partition is lcm of its parts. a(n) is the number of conjugacy classes of the symmetric group S_n such that a representative of the class has order n. Here order means the order of an element of a group. Note that a(n) = 1 if and only if n is a prime power. - W. Edwin Clark, Aug 05 2014 LINKS Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 1..4000 (first 1025 terms from Joerg Arndt) FORMULA Coefficient of x^n in expansion of Sum_{i divides n} A008683(n/i)*1/Product_{j divides i} (1-x^j). EXAMPLE The a(15) = 5 partitions are (15), (5,3,3,3,1), (5,5,3,1,1), (5,3,3,1,1,1,1), (5,3,1,1,1,1,1,1,1). - Gus Wiseman, Aug 01 2018 MAPLE A:= proc(n) uses numtheory; local S; S:= add(mobius(n/i)*1/mul(1-x^j, j=divisors(i)), i=divisors(n)); coeff(series(S, x, n+1), x, n); end proc: seq(A(n), n=1..100); # Robert Israel, Aug 06 2014 MATHEMATICA a[n_] := With[{s = Sum[MoebiusMu[n/i]*1/Product[1-x^j, {j, Divisors[i]}], {i, Divisors[n]}]}, SeriesCoefficient[s, {x, 0, n}]]; Array[a, 80}] (* Jean-François Alcover, Feb 29 2016 *) Table[Length[Select[IntegerPartitions[n], LCM@@#==n&]], {n, 50}] (* Gus Wiseman, Aug 01 2018 *) PROG (PARI) pr(k, x)={my(t=1); fordiv(k, d, t *= (1-x^d) ); return(t); } a(n) = { my( x = 'x+O('x^(n+1)) ); polcoeff( Pol( sumdiv(n, i, moebius(n/i) / pr(i, x) ) ), n ); } vector(66, n, a(n) ) \\ Joerg Arndt, Aug 06 2014 CROSSREFS Cf. A018818, A074351, A074752. Main diagonal of A256067, A256554. Cf. A000837, A074761, A285572, A290103, A305566, A316429, A316431, A316432, A316433, A317624. Sequence in context: A254655 A344971 A077254 * A037861 A145037 A267115 Adjacent sequences: A074758 A074759 A074760 * A074762 A074763 A074764 KEYWORD easy,nonn AUTHOR Vladeta Jovovic, Sep 28 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 18 15:24 EDT 2024. Contains 372664 sequences. (Running on oeis4.)