login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305566
Number of finite sets of relatively prime positive integers > 1 with least common multiple n.
12
0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 10, 0, 2, 2, 0, 0, 10, 0, 10, 2, 2, 0, 44, 0, 2, 0, 10, 0, 84, 0, 0, 2, 2, 2, 122, 0, 2, 2, 44, 0, 84, 0, 10, 10, 2, 0, 184, 0, 10, 2, 10, 0, 44, 2, 44, 2, 2, 0, 1590, 0, 2, 10, 0, 2, 84, 0, 10, 2, 84, 0, 1156, 0, 2, 10, 10, 2
OFFSET
1,6
COMMENTS
From Robert Israel, Jun 06 2018: (Start)
a(n) depends only on the prime signature of n.
If n is in A000961, a(n)=0.
If n is in A006881, a(n)=2. (End)
If n = p^k*q, where p and q are distinct primes and k >= 1, then a(n) = 3*4^(k-1)-2^(k-1). - Robert Israel, Jun 07 2018
LINKS
EXAMPLE
The a(12) = 10 sets:
{3,4},
{2,3,4}, {2,3,12}, {3,4,6}, {3,4,12},
{2,3,4,6}, {2,3,4,12}, {2,3,6,12}, {3,4,6,12},
{2,3,4,6,12}.
MAPLE
f:= proc(n) g(sort(map(t -> t[2], ifactors(n)[2]))) end proc:
f(1):= 0:
g:= proc(L) option remember;
local nL, Cands, nC, Cons, i;
nL:= nops(L);
Cands:= [[]];
for i from 1 to nL do
Cands:= [seq(seq([op(s), t], t=0..L[i]), s=Cands)];
od:
Cands:= remove(t -> max(t)=0, Cands);
nC:= nops(Cands);
Cons:= [seq(select(t -> Cands[t][i]=0, {$1..nC}), i=1..nL),
seq(select(t -> Cands[t][i]=L[i], {$1..nC}), i=1..nL)];
h(Cons, {$1..nC})
end proc:
h:= proc(Cons, Cands)
local t, i, Consi, Candsi;
if Cons = [] then return 2^nops(Cands) fi;
t:= 0;
for i from 1 to nops(Cons[1]) do
Consi:= map(proc(t) if member(Cons[1][i], t) then NULL else t minus Cons[1][1..i-1] fi end proc, Cons[2..-1]);
if member({}, Consi) then next fi;
Candsi:= Cands minus Cons[1][1..i];
t:= t + procname(Consi, Candsi)
od;
t
end proc:
map(f, [$1..100]); # Robert Israel, Jun 07 2018
MATHEMATICA
Table[Length[Select[Subsets[Rest[Divisors[n]]], And[GCD@@#==1, LCM@@#==n]&]], {n, 100}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 05 2018
STATUS
approved