OFFSET
1,6
COMMENTS
From Robert Israel, Jun 06 2018: (Start)
a(n) depends only on the prime signature of n.
If n is in A000961, a(n)=0.
If n is in A006881, a(n)=2. (End)
If n = p^k*q, where p and q are distinct primes and k >= 1, then a(n) = 3*4^(k-1)-2^(k-1). - Robert Israel, Jun 07 2018
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
EXAMPLE
The a(12) = 10 sets:
{3,4},
{2,3,4}, {2,3,12}, {3,4,6}, {3,4,12},
{2,3,4,6}, {2,3,4,12}, {2,3,6,12}, {3,4,6,12},
{2,3,4,6,12}.
MAPLE
f:= proc(n) g(sort(map(t -> t[2], ifactors(n)[2]))) end proc:
f(1):= 0:
g:= proc(L) option remember;
local nL, Cands, nC, Cons, i;
nL:= nops(L);
Cands:= [[]];
for i from 1 to nL do
Cands:= [seq(seq([op(s), t], t=0..L[i]), s=Cands)];
od:
Cands:= remove(t -> max(t)=0, Cands);
nC:= nops(Cands);
Cons:= [seq(select(t -> Cands[t][i]=0, {$1..nC}), i=1..nL),
seq(select(t -> Cands[t][i]=L[i], {$1..nC}), i=1..nL)];
h(Cons, {$1..nC})
end proc:
h:= proc(Cons, Cands)
local t, i, Consi, Candsi;
if Cons = [] then return 2^nops(Cands) fi;
t:= 0;
for i from 1 to nops(Cons[1]) do
Consi:= map(proc(t) if member(Cons[1][i], t) then NULL else t minus Cons[1][1..i-1] fi end proc, Cons[2..-1]);
if member({}, Consi) then next fi;
Candsi:= Cands minus Cons[1][1..i];
t:= t + procname(Consi, Candsi)
od;
t
end proc:
map(f, [$1..100]); # Robert Israel, Jun 07 2018
MATHEMATICA
Table[Length[Select[Subsets[Rest[Divisors[n]]], And[GCD@@#==1, LCM@@#==n]&]], {n, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 05 2018
STATUS
approved