login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A137347 Triangular sequence from coefficients of a polynomial recursion: p(x, n] = x*p(x, n - 1) - 2*x^2*p(x, n - 2) + x^3*p(x, n - 3). 0
1, -1, 1, 0, -1, -1, 0, 0, 1, -2, 0, 0, 0, 2, 1, 0, 0, 0, 0, -1, 4, 0, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 0, -7, 0, 0, 0, 0, 0, 0, 0, 7, -3, 0, 0, 0, 0, 0, 0, 0, 0, 3, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10, -15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, -24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,10

COMMENTS

Row sums are:

{1, 0, -2, -1, 3, 3, -4, -7, 4, 14, -1, -25, -9, 40, 33, -56}

LINKS

Table of n, a(n) for n=1..117.

FORMULA

p(x, n] = x*p(x, n - 1) - 2*x^2*p(x, n - 2) + x^3*p(x, n - 3).

EXAMPLE

{1},

{-1, 1},

{0, -1, -1},

{0, 0, 1, -2},

{0, 0, 0, 2, 1},

{0, 0, 0, 0, -1, 4},

{0, 0, 0, 0, 0, -4},

{0, 0, 0, 0, 0, 0, 0, -7},

{0, 0, 0, 0, 0, 0, 0, 7, -3},

{0, 0, 0, 0, 0, 0, 0, 0, 3, 11},

{0, 0, 0, 0, 0, 0, 0, 0, 0, -11, 10},

{0, 0, 0, 0, 0,0, 0, 0, 0, 0, -10, -15},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,15, -24},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24, 16},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -16, 49},

{0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, -49, -7}

MATHEMATICA

Clear[p, x, a0, b0] p[x, -1] = 0; p[x, 0] = 1; p[x, 1] = x - 1; p[x_, n_] := p[x, n] = x*p[x, n - 1] - 2*x^2*p[x, n - 2] + x^3*p[x, n - 3]; g = Table[ExpandAll[p[x, n]], {n, 0, 15}]; a = Table[CoefficientList[p[x, n], x], {n, 0, 15}]; Flatten[a]

CROSSREFS

Sequence in context: A088886 A317636 A305566 * A024941 A219492 A285796

Adjacent sequences:  A137344 A137345 A137346 * A137348 A137349 A137350

KEYWORD

uned,tabl,sign

AUTHOR

Roger L. Bagula, Apr 08 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 04:14 EDT 2018. Contains 316304 sequences. (Running on oeis4.)