login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326813
Dirichlet g.f.: zeta(2*s) / (1 - 2^(-s)).
1
1, 1, 0, 2, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 3, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2
OFFSET
1,4
FORMULA
G.f.: Sum_{k>=0} (theta_3(x^(2^k)) - 1) / 2.
a(n) = Sum_{d|n} A209229(n/d) * A010052(d).
a(n) = Sum_{d|n} tau(n/d) * (-1)^bigomega(d) * 2^(omega(2*d) - 1), where tau = A000005, bigomega = A001222 and omega = A001221.
Product_{n>=1} (1 + x^n)^a(n) = g.f. for A001156.
Sum_{k=1..n} a(k) ~ sqrt(2*n) / (sqrt(2)-1). - Vaclav Kotesovec, Oct 20 2019
Multiplicative with a(2^e) = floor(e/2) + 1, and a(p^e) = 0 if e is odd and 1 if e is even, for odd primes p. - Amiram Eldar, Nov 30 2020
MATHEMATICA
Table[Sum[Boole[IntegerQ[Log[2, n/d]]] Boole[IntegerQ[d^(1/2)]], {d, Divisors[n]}], {n, 1, 100}]
Table[Sum[DivisorSigma[0, n/d] (-1)^PrimeOmega[d] 2^(PrimeNu[2 d] - 1), {d, Divisors[n]}], {n, 1, 100}]
f[2, e_] := Floor[e/2] + 1; f[p_, e_] := Boole @ EvenQ[e]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Nov 30 2020 *)
CROSSREFS
Sequence in context: A088886 A317636 A305566 * A137347 A024941 A219492
KEYWORD
nonn,mult
AUTHOR
Ilya Gutkovskiy, Oct 19 2019
STATUS
approved