login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A326814 Dirichlet g.f.: (1/zeta(s)) * Product_{p prime} (1 - 2 * p^(-s)). 2
1, -3, -3, 2, -3, 9, -3, 0, 2, 9, -3, -6, -3, 9, 9, 0, -3, -6, -3, -6, 9, 9, -3, 0, 2, 9, 0, -6, -3, -27, -3, 0, 9, 9, 9, 4, -3, 9, 9, 0, -3, -27, -3, -6, -6, 9, -3, 0, 2, -6, 9, -6, -3, 0, 9, 0, 9, 9, -3, 18, -3, 9, -6, 0, 9, -27, -3, -6, 9, -27, -3, 0, -3, 9, -6 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Moebius transform applied twice to A076479 (unitary Moebius function).

LINKS

Amiram Eldar, Table of n, a(n) for n = 1..10000

Ilya Gutkovskiy, Scatter plot of partial sums of A326814 up to n=10000.

FORMULA

a(n) = Sum_{d|n} mu(n/d) * mu(d) * 2^omega(d), where mu = A008683 and omega = A001221.

Multiplicative with a(p^e) = -3 if e = 1, 2 if e = 2, and 0 otherwise. - Amiram Eldar, Oct 26 2020

MATHEMATICA

Table[Sum[MoebiusMu[n/d] MoebiusMu[d] 2^PrimeNu[d], {d, Divisors[n]}], {n, 1, 75}]

f[p_, e_] := Which[e == 1, -3, e == 2, 2, e > 2, 0]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Oct 26 2020 *)

PROG

(PARI) a(n) = sumdiv(n, d, moebius(n/d)*moebius(d)*2^omega(d)); \\ Michel Marcus, Oct 26 2020

CROSSREFS

Cf. A001221, A007428, A008683, A046099 (positions of 0's), A076479, A182139 (Dirichlet inverse), A226177, A326415, A326815.

Sequence in context: A003560 A262212 A123676 * A122775 A086632 A038699

Adjacent sequences:  A326811 A326812 A326813 * A326815 A326816 A326817

KEYWORD

sign,mult,easy

AUTHOR

Ilya Gutkovskiy, Oct 19 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 11 21:35 EDT 2021. Contains 343808 sequences. (Running on oeis4.)