login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326814
Dirichlet g.f.: (1/zeta(s)) * Product_{p prime} (1 - 2 * p^(-s)).
2
1, -3, -3, 2, -3, 9, -3, 0, 2, 9, -3, -6, -3, 9, 9, 0, -3, -6, -3, -6, 9, 9, -3, 0, 2, 9, 0, -6, -3, -27, -3, 0, 9, 9, 9, 4, -3, 9, 9, 0, -3, -27, -3, -6, -6, 9, -3, 0, 2, -6, 9, -6, -3, 0, 9, 0, 9, 9, -3, 18, -3, 9, -6, 0, 9, -27, -3, -6, 9, -27, -3, 0, -3, 9, -6
OFFSET
1,2
COMMENTS
Moebius transform applied twice to A076479 (unitary Moebius function).
FORMULA
a(n) = Sum_{d|n} mu(n/d) * mu(d) * 2^omega(d), where mu = A008683 and omega = A001221.
Multiplicative with a(p^e) = -3 if e = 1, 2 if e = 2, and 0 otherwise. - Amiram Eldar, Oct 26 2020
MATHEMATICA
Table[Sum[MoebiusMu[n/d] MoebiusMu[d] 2^PrimeNu[d], {d, Divisors[n]}], {n, 1, 75}]
f[p_, e_] := Which[e == 1, -3, e == 2, 2, e > 2, 0]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Oct 26 2020 *)
PROG
(PARI) a(n) = sumdiv(n, d, moebius(n/d)*moebius(d)*2^omega(d)); \\ Michel Marcus, Oct 26 2020
(PARI) for(n=1, 100, print1(direuler(p=2, n, (1 - 2*X)*(1 - X))[n], ", ")) \\ Vaclav Kotesovec, Aug 22 2021
CROSSREFS
Cf. A001221, A007428, A008683, A046099 (positions of 0's), A076479, A182139 (Dirichlet inverse), A226177, A326415, A326815.
Sequence in context: A378451 A123676 A378219 * A374902 A122775 A086632
KEYWORD
sign,mult,easy
AUTHOR
Ilya Gutkovskiy, Oct 19 2019
STATUS
approved