login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A076479
a(n) = mu(rad(n)), where mu is the Moebius-function (A008683) and rad is the radical or squarefree kernel (A007947).
40
1, -1, -1, -1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1
OFFSET
1,1
COMMENTS
Multiplicative: a(1) = 1, a(n) for n >=2 is sign of parity of number of distinct primes dividing n. a(p) = -1, a(pq) = 1, a(pq...z) = (-1)^k, a(p^k) = -1, where p,q,.. z are distinct primes and k natural numbers. - Jaroslav Krizek, Mar 17 2009
a(n) is the unitary Moebius function, i.e., the inverse of the constant 1 function under the unitary convolution defined by (f X g)(n)= sum of f(d)g(n/d), where the sum is over the unitary divisors d of n (divisors d of n such that gcd(d,n/d)=1). - Laszlo Toth, Oct 08 2009
LINKS
Eckford Cohen, Arithmetical functions associated with the unitary divisors of an integer, Math. Zeitschr., Vol. 74 (1960), pp. 66-80.
Jan van de Lune and Robert E. Dressler, Some theorems concerning the number theoretic function omega(n), Journal für die reine und angewandte Mathematik, Vol. 277 (1975), pp. 117-119; alternative link.
FORMULA
a(n) = A008683(A007947(n)).
a(n) = (-1)^A001221(n). Multiplicative with a(p^e) = -1. - Vladeta Jovovic, Dec 03 2002
a(n) = sign(A180403(n)). - Mats Granvik, Oct 08 2010
Sum_{n>=1} a(n)*phi(n)/n^3 = A065463 with phi()=A000010() [Cohen, Lemma 3.5]. - R. J. Mathar, Apr 11 2011
Dirichlet convolution of A000012 with A226177 (signed variant of A074823 with one factor mu(n) removed). - R. J. Mathar, Apr 19 2011
Sum_{n>=1} a(n)/n^2 = A065469. - R. J. Mathar, Apr 19 2011
a(n) = Sum_{d|n} mu(d)*tau_2(d) = Sum_{d|n} A008683(d)*A000005(d) . - Enrique Pérez Herrero, Jan 17 2013
a(A030230(n)) = -1; a(A030231(n)) = +1. - Reinhard Zumkeller, Jun 01 2013
Dirichlet g.f.: zeta(s) * Product_{p prime} (1 - 2p^(-s)). - Álvar Ibeas, Dec 30 2018
Sum_{n>=1} a(n)/n = 0 (van de Lune and Dressler, 1975). - Amiram Eldar, Mar 05 2021
From Richard L. Ollerton, May 07 2021: (Start)
For n>1, Sum_{k=1..n} a(gcd(n,k))*phi(gcd(n,k))*rad(gcd(n,k))/gcd(n,k) = 0.
For n>1, Sum_{k=1..n} a(n/gcd(n,k)))*phi(gcd(n,k))*rad(n/gcd(n,k))*gcd(n,k) = 0. (End)
a(n) = Sum_{d1|n} Sum_{d2|n} mu(d1*d2). - Ridouane Oudra, May 25 2023
MAPLE
A076479 := proc(n)
(-1)^A001221(n) ;
end proc:
seq(A076479(n), n=1..80) ; # R. J. Mathar, Nov 02 2016
MATHEMATICA
Table[(-1)^PrimeNu[n], {n, 50}] (* Enrique Pérez Herrero, Jan 17 2013 *)
PROG
(PARI)
N=66;
mu=vector(N); mu[1]=1;
{ for (n=2, N,
s = 0;
fordiv (n, d,
if (gcd(d, n/d)!=1, next() ); /* unitary divisors only */
s += mu[d];
);
mu[n] = -s;
); };
mu /* Joerg Arndt, May 13 2011 */
/* omitting the line if ( gcd(...)) gives the usual Moebius function */
(PARI) a(n)=(-1)^omega(n) \\ Charles R Greathouse IV, Aug 02 2013
(Haskell)
a076479 = a008683 . a007947 -- Reinhard Zumkeller, Jun 01 2013
(Magma) [(-1)^(#PrimeDivisors(n)): n in [1..100]]; // Vincenzo Librandi, Dec 31 2018
(Python)
from math import prod
from sympy.ntheory import mobius, primefactors
def A076479(n): return mobius(prod(primefactors(n))) # Chai Wah Wu, Sep 24 2021
CROSSREFS
KEYWORD
sign,mult
AUTHOR
Reinhard Zumkeller, Oct 14 2002
STATUS
approved