The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A143622 a(n) = (-1)^binomial(n,8): Periodic sequence 1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,... . 3
 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Periodic sequence with period 16. More generally, it appears that (-1)^binomial(n,2^r) gives a periodic sequence of period 2^(r+1), the period consisting of a block of 2^r plus ones followed by a block of 2^r minus ones. See A033999 (r = 0), A057077 (r = 1) and A143621 (r = 2). Nonsimple continued fraction expansion of (47+sqrt(445))/42 = 1.62131007404.. - R. J. Mathar, Mar 08 2012 LINKS FORMULA a(n) = (-1)^binomial(n,8) = (-1)^floor(n/8), since sum {k = 1..n-7} k(k+1)...(k+6)/7! = binomial(n,8) == floor(n/8) (mod 2) for n = 0,1,...,15 by calculation and both sides increase by an even number if we substitute n+16 for n. a(n) = 1/8*((n+8) mod 16 - n mod 16). O.g.f.: (1+x+x^2+x^3+x^4+x^5+x^6+x^7)/(1+x^8 ) = (1+x)*(1+x^2)*(1+x^4)/(1+x^8) = (1-x^8)/((1-x)*(1+x^8)). Define E(k) = sum {n = 0..inf} a(n)*n^k/n! for k = 0,1,2,... . Then E(k) is a an integral linear combination of E(0),E(1),...,E(7) (a Dobinski-type relation). a(n)=(-1)^A180969(3,n) MAPLE with(combinat): a := n -> (-1)^binomial(n, 8): seq(a(n), n = 0..95); CROSSREFS A033999, A057077, A130151, A143621. Sequence in context: A143621 A292117 A098417 * A246016 A306638 A076479 Adjacent sequences:  A143619 A143620 A143621 * A143623 A143624 A143625 KEYWORD easy,sign AUTHOR Peter Bala, Aug 30 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 21 22:47 EST 2020. Contains 331129 sequences. (Running on oeis4.)