login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130151
Period 6: repeat [1, 1, 1, -1, -1, -1].
15
1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1
OFFSET
0,1
FORMULA
a(n+6) = a(n), a(0)=a(1)=a(2)=-a(3)=-a(4)=-a(5)=1.
a(n) = ((-1)^n * (4 * (cos((2*n + 1)*Pi/3) + cos(n*Pi)) + 1) - 4) / 3. - Federico Acha Neckar (f0383864(AT)hotmail.com), Sep 01 2007
a(n) = (-1)^n * (4 * cos((2*n + 1) * Pi/3) + 1) / 3. - Federico Acha Neckar (f0383864(AT)hotmail.com), Sep 02 2007
G.f.: (1+x+x^2)/((1+x)*(x^2-x+1)). - R. J. Mathar, Nov 14 2007
a(n) = 3*a(n-1) - a(n-3) + 3*a(n-4) for n>3. - Paul Curtz, Nov 22 2007
a(n) = (-1)^floor(n/3). Compare with A057077, A143621 and A143622. Define E(k) = Sum_{n >= 0} a(n)*n^k/n! for k = 0,1,2,... . Then E(k) is an integral linear combination of E(0), E(1) and E(2) (a Dobinski-type relation). Precisely, E(k) = A143628(k)*E(0) + A143629(k)*E(1) + A143630(k)*E(2). - Peter Bala, Aug 28 2008
Euler transform of length 6 sequence [1, 0, -2, 0, 0, 1]. - Michael Somos, Feb 26 2011
a(n) = b(2*n + 1) where b(n) is multiplicative with b(2^e) = 0^e, b(3^e) = -(-1)^e if e>0, b(p^e) = 1 if p == 1 (mod 4), b(p^e) = (-1)^e if p == 3 (mod 4) and p>3. - Michael Somos, Feb 26 2011
a(n + 3) = a(-1 - n) = -a(n) for all n in Z. - Michael Somos, Feb 26 2011
a(n) = (-1)^n * A257075(n) for all n in Z. - Michael Somos, Apr 15 2015
G.f.: 1 / (1 - x / (1 + 2*x^2 / (1 + x / (1 + x / (1 - x))))). - Michael Somos, Apr 15 2015
From Wesley Ivan Hurt, Jul 05 2016: (Start)
a(n) + a(n-3) = 0 for n>2.
a(n) = (cos(n*Pi) + 2*cos(n*Pi/3) + 2*sqrt(3)*sin(n*Pi/3)) / 3. (End)
a(n)*a(n-4) = a(n-1)*a(n-3) for all n in Z. - Michael Somos, Feb 25 2020
EXAMPLE
G.f. = 1 + x + x^2 - x^3 - x^4 - x^5 + x^6 + x^7 + x^8 - x^9 - x^10 - x^11 + ...
G.f. = q + q^3 + q^5 - q^7 - q^9 - q^11 + q^13 + q^15 + q^17 - q^19 - q^21 + ...
MAPLE
seq(op([1, 1, 1, -1, -1, -1]), n=0..30); # Wesley Ivan Hurt, Jul 05 2016
MATHEMATICA
a[ n_] := (-1)^Quotient[n, 3]; (* Michael Somos, Apr 24 2014 *)
PadRight[{}, 100, {1, 1, 1, -1, -1, -1}] (* Wesley Ivan Hurt, Jul 05 2016 *)
PROG
(PARI) {a(n) = (-1) ^ (n\3)}; /* Michael Somos, Feb 26 2011 */
(Magma) &cat [[1, 1, 1, -1, -1, -1]^^20]; // Wesley Ivan Hurt, Jul 05 2016
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Paul Curtz, Aug 03 2007
STATUS
approved