|
|
A143431
|
|
Periodic length 8 sequence [1, -1, 1, -1, -1, 1, -1, 1, ...].
|
|
3
|
|
|
1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
Nonsimple continued fraction expansion of (1+sqrt 5)/2= A001622. - R. J. Mathar, Mar 08 2012
|
|
LINKS
|
|
|
FORMULA
|
Euler transform of length 8 sequence [ -1, 1, 0, -2, 0, 0, 0, 1].
a(-1 - n) = a(n). a(n + 4) = - a(n).
G.f.: (1 - x) * (1 + x^2) / (1 + x^4).
a(n)=(1/4)*{-[(n+1) mod 8]+[(n+2) mod 8]-[(n+3) mod 8]+[(n+5) mod 8]-[(n+6) mod 8]+[(n+7) mod 8]}, with n>=0 [From Paolo P. Lava, Aug 25 2008]
|
|
EXAMPLE
|
1 - x + x^2 - x^3 - x^4 + x^5 - x^6 + x^7 + x^8 - x^9 + x^10 - x^11 + ...
|
|
PROG
|
(PARI) a(n) = (-1)^(n + n\4)
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|