|
|
A143432
|
|
Ultimately periodic length 4 sequence [ 2, 2, 0, 0, ...] with a(0) = a(1) = 1.
|
|
2
|
|
|
1, 1, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,5
|
|
LINKS
|
|
|
FORMULA
|
Euler transform of length 8 sequence [ 1, -1, 0, 2, 0, 0, 0, -1].
a(4*n + 2) = a(4*n + 3) = 0. a(4*n) = a(4*n + 1) = 2 unless n<1.
G.f.: (1 + x^4) / ((1 - x) * (1 + x^2)).
a(n)=(1/6)*{-2*(n mod 4)+[(n+1) mod 4]+4*[(n+2) mod 4]+[(n+3) mod 4]}-[C(2*n,n) mod 2]-{C[(n+1)^2,n+3] mod 2}, with n>=0 [From Paolo P. Lava, Aug 25 2008]
a(n) = ((n+2) mod 4) - (n mod 2) - floor(3/(n+2)). [Wesley Ivan Hurt, Jun 30 2013]
|
|
MATHEMATICA
|
|
|
PROG
|
(PARI) {a(n) = if(n<0, 0, n = n\2; if( n%2, 0, (n>1)+1 ))}
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|