login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A143433 Expansion of f(-x, x^3) in powers of x where f(,) is Ramanujan's general theta function. 3
1, -1, 0, 1, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

Euler transform of period 16 sequence [ -1, 0, 1, 1, 1, -1, -1, -2, -1, -1, 1, 1, 1, 0, -1, -1, ...].

Pattern of signs of nonzero terms is A143431.

G.f.: Sum_{k>=0} (-1)^(k + floor(k/4)) * x^(k * (k+1) / 2).

a(n) = (-1)^n * A143434(n).

a(2*n) = A244465(n). a(2*n + 1) = - A244525(n). a(3*n + 2) = a(5*n + 2) = a(5*n + 4) = 0.

EXAMPLE

G.f. = 1 - x + x^3 - x^6 - x^10 + x^15 - x^21 + x^28 + x^36 - x^45 + x^55 + ...

G.f. = q - q^9 + q^25 - q^49 - q^81 + q^121 - q^169 + q^225 + q^289 + ...

MATHEMATICA

a[ n_] := SeriesCoefficient[ QPochhammer[ x, -x^4] QPochhammer[ -x^3, -x^4] QPochhammer[ -x^4], {x, 0, n}]; (* Michael Somos, Jun 03 2015 *)

PROG

(PARI) {a(n) = if( n<0, 0, if( issquare(8*n + 1, &n), n = n\2; (-1)^(n + n\4), 0))};

(PARI) {a(n) = my(A); if( n<0, 0, polcoeff( prod(k=1, n, (1 - x^k)^( [1, 1, 0, -1, -1, -1, 1, 1, 2, 1, 1, -1, -1, -1, 0, 1, 1] [k%16 + 1]), 1 + x * O(x^n)), n))};

CROSSREFS

Cf. A143434, A244465, A244525.

Sequence in context: A155972 A010054 A106459 * A143434 A197870 A033806

Adjacent sequences:  A143430 A143431 A143432 * A143434 A143435 A143436

KEYWORD

sign,changed

AUTHOR

Michael Somos, Aug 14 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 20 05:07 EST 2019. Contains 329323 sequences. (Running on oeis4.)