The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A244465 Expansion of f(-x^3, -x^5) in powers of x where f() is Ramanujan's two-variable theta function. 4
 1, 0, 0, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Michael Somos, Introduction to Ramanujan theta functions Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Euler transform of period 8 sequence [ 0, 0, -1, 0, -1, 0, 0, -1, ...]. G.f.: f(-x^3, -x^5) = Sum_{k in Z} (-1)^k * x^(4*k^2 - k). a(n) = (-1)^n * A214264(n). EXAMPLE G.f. = 1 - x^3 - x^5 + x^14 + x^18 - x^33 - x^39 + x^60 + x^68 - x^95 + ... G.f. = q - q^49 - q^81 + q^225 + q^289 - q^529 - q^625 + q^961 + q^1089 + ... MATHEMATICA a[ n_] := SeriesCoefficient[ QPochhammer[ x^3, x^8] QPochhammer[ x^5, x^8] QPochhammer[ x^8], {x, 0, n}]; PROG (PARI) {a(n) = issquare( 16*n + 1) * (-1)^n}; CROSSREFS Cf. A214264. Sequence in context: A123504 A273511 A104015 * A214264 A173858 A217586 Adjacent sequences: A244462 A244463 A244464 * A244466 A244467 A244468 KEYWORD sign AUTHOR Michael Somos, Jun 28 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 11 07:17 EST 2023. Contains 367717 sequences. (Running on oeis4.)