login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244465
Expansion of f(-x^3, -x^5) in powers of x where f() is Ramanujan's two-variable theta function.
4
1, 0, 0, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
0,1
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Euler transform of period 8 sequence [ 0, 0, -1, 0, -1, 0, 0, -1, ...].
G.f.: f(-x^3, -x^5) = Sum_{k in Z} (-1)^k * x^(4*k^2 - k).
a(n) = (-1)^n * A214264(n).
EXAMPLE
G.f. = 1 - x^3 - x^5 + x^14 + x^18 - x^33 - x^39 + x^60 + x^68 - x^95 + ...
G.f. = q - q^49 - q^81 + q^225 + q^289 - q^529 - q^625 + q^961 + q^1089 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x^3, x^8] QPochhammer[ x^5, x^8] QPochhammer[ x^8], {x, 0, n}];
PROG
(PARI) {a(n) = issquare( 16*n + 1) * (-1)^n};
CROSSREFS
Cf. A214264.
Sequence in context: A123504 A273511 A104015 * A214264 A173858 A217586
KEYWORD
sign
AUTHOR
Michael Somos, Jun 28 2014
STATUS
approved