OFFSET
1,2
COMMENTS
Odd terms > 1 are the square of some prime: a(2) = 9 = 3^2, a(23) = 961 = 31^2, a(36) = 1849 = 43^2, ... .
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..11320
EXAMPLE
9 is not prime, phi(9) = 6 and mu(6) = 1, mu(phi(9)) = 1, so 9 is here.
MAPLE
filter:= n -> not isprime(n) and numtheory:-mobius(numtheory:-phi(n))=1:
select(filter, [$1..10000]); # Robert Israel, Aug 01 2014
MATHEMATICA
Select[Range[3200],
And[MoebiusMu[EulerPhi[#]] == 1,
Not[PrimeQ[#]]] &] (* Michael De Vlieger, Aug 06 2014 *)
PROG
(C) a(n) {return mu(phi(n))==1 ? n : ; }
(PARI) for(n=1, 10^4, if(moebius(eulerphi(n))==1, print1(n, ", "))) \\ Derek Orr, Aug 01 2014
(Python)
from sympy import totient, factorint, primefactors, isprime
[n for n in range(1, 10**5) if n == 1 or (not isprime(n) and max(factorint(totient(n)).values()) < 2 and (-1)**len(primefactors(totient(n))) == 1)] # Chai Wah Wu, Aug 06 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Torlach Rush, Jun 28 2014
STATUS
approved