login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244468
E.g.f.: Sum_{n>=0} Series_Reversion( x/exp(n*x) )^n / n!.
1
1, 1, 3, 22, 293, 6056, 175687, 6719476, 325741705, 19470659968, 1403821003211, 119836341280844, 11923671362914093, 1365089081187409072, 177915120382062044815, 26161941602115263558716, 4306833594841510336897553, 788302770933266249649820544, 159446049770474152196515579027
OFFSET
0,3
COMMENTS
LambertW identities utilized in the e.g.f.:
(1) Series_Reversion( x/exp(t*x) )^n = Sum_{k>=0} n*(n+k)^(k-1) * t^k * x^(n+k) / k!.
(2) Sum_{n>=0} Series_Reversion( x/exp(t*x) )^n/n! = Sum_{k>=0} (k*t+1)^(k-1)*x^k/k!.
FORMULA
a(n) = Sum_{k=0..n} binomial(n,k) * n^(k-1) * (n-k)^(k+1) for n>0 with a(0)=1.
E.g.f.: Sum_{n>=0} Sum_{k>=0} C(n+k,k) * (n+k)^(k-1) * n^(k+1) * x^(n+k)/(n+k)!.
E.g.f.: Sum_{n>=0} (-LambertW(-n*x))^n / (n^n * n!).
a(n) = [x^n] Sum_{k>=0} x^k/(1 - n*k*x)^k. - Ilya Gutkovskiy, Oct 09 2018
EXAMPLE
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 22*x^3/3! + 293*x^4/4! + 6056*x^5/5! +...
where the series
A(x) = Sum_{n>=0} Series_Reversion( x/exp(n*x) )^n / n!
begins:
A(x) = 1 + (x + 2*x^2/2! + 9*x^3/3! + 64*x^4/4! + 625*x^5/5! +...)
+ (x^2/2! + 12*x^3/3! + 192*x^4/4! + 4000*x^5/5! + 103680*x^6/6! +...)
+ (x^3/3! + 36*x^4/4! + 1350*x^5/5! + 58320*x^6/6! +...)
+ (x^4/4! + 80*x^5/5! + 5760*x^6/6! + 439040*x^7/7! +...)
+ (x^5/5! + 150*x^6/6! + 18375*x^7/7! + 2240000*x^8/8! +...)
+ (x^6/6! + 252*x^7/7! + 48384*x^8/8! + 8817984*x^9/9! +...)
+ (x^7/7! + 392*x^8/8! + 111132*x^9/9! + 28812000*x^10/10! +...) +...
and equals
A(x) = Sum_{n>=0} Sum_{k>=0} C(n+k,k) * (n+k)^(k-1) * n^(k+1) * x^(n+k)/(n+k)!
= Sum_{n>=0} 1/n! * Sum_{k>=0} n*(n+k)^(k-1) * n^k * x^(n+k) / k!
= Sum_{n>=0} 1/n! * Series_Reversion( x/exp(n*x) )^n
= Sum_{n>=0} x^n/n! * Sum_{k=0..n} C(n,k) * n^(k-1) * (n-k)^(k+1).
MATHEMATICA
Flatten[{1, Table[Sum[Binomial[n, k] * n^(k-1) * (n-k)^(k+1), {k, 0, n}], {n, 1, 20}]}] (* Vaclav Kotesovec, Jul 13 2014 *)
PROG
(PARI) {a(n)=if(n==0, 1, sum(k=0, n, binomial(n, k) * n^(k-1) * (n-k)^(k+1)))}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n)=n!*polcoeff(1+sum(m=1, n, serreverse(x/exp(m*x +x*O(x^n)))^m/m!), n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n)=local(LambertW=serreverse(x*exp(x+x*O(x^n))), A=1); A=sum(m=0, n, 1/m!/m^m*subst(-LambertW, x, -m*x)^m); n!*polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Cf. A299426.
Sequence in context: A122778 A108991 A247659 * A325295 A298693 A326430
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 28 2014
STATUS
approved