OFFSET
1,1
COMMENTS
It is an unsolved problem to determine if this sequence has a positive density in the primes. - Pieter Moree (moree(AT)mpim-bonn.mpg.de), Nov 03 2003
Except for the initial element 2, this sequence seems to be exactly those primes the sum of whose nonquadratic, nonprimitive-root residues is congruent to -1(mod p). - Dimitri Papadopoulos, Jan 10 2016
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
Eric Weisstein's World of Mathematics, Moebius Function
MAPLE
filter:= proc(p) isprime(p) and numtheory:-mobius(p-1) = 1 end proc:
select(filter, [2, seq(i, i=3..2000, 2)]); # Robert Israel, Feb 03 2016
MATHEMATICA
Select[Prime[Range[400]], MoebiusMu[ #-1]==1&]
PROG
(PARI) lista(nn) = forprime(p=2, nn, if (moebius(p-1) == 1, print1(p, ", "))); \\ Michel Marcus, Jan 10 2016
(PARI) list(lim)=my(v=List(), last); forsquarefree(k=1, lim\1, if(moebius(k)==1, last=k[1], if(k[2][, 2]==[1]~ && k[1]-last==1, listput(v, k[1])))); Vec(v) \\ Charles R Greathouse IV, Jan 08 2018
(Magma) [n: n in [2..2000] | IsPrime(n) and MoebiusMu(n-1) eq 1]; // Vincenzo Librandi, Jan 10 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane and T. D. Noe, Nov 03 2003
STATUS
approved