login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A088179
Primes p such that mu(p-1) = 1; that is, p-1 is squarefree and has an even number of prime factors, where mu is the Moebius function.
9
2, 7, 11, 23, 47, 59, 83, 107, 167, 179, 211, 227, 263, 331, 347, 359, 383, 463, 467, 479, 503, 547, 563, 571, 587, 691, 719, 839, 859, 863, 887, 911, 967, 983, 1019, 1123, 1187, 1231, 1283, 1291, 1303, 1307, 1319, 1327, 1367, 1439, 1483, 1487, 1523, 1619, 1723
OFFSET
1,1
COMMENTS
It is an unsolved problem to determine if this sequence has a positive density in the primes. - Pieter Moree (moree(AT)mpim-bonn.mpg.de), Nov 03 2003
Except for the initial element 2, this sequence seems to be exactly those primes the sum of whose nonquadratic, nonprimitive-root residues is congruent to -1(mod p). - Dimitri Papadopoulos, Jan 10 2016
LINKS
Eric Weisstein's World of Mathematics, Moebius Function
MAPLE
filter:= proc(p) isprime(p) and numtheory:-mobius(p-1) = 1 end proc:
select(filter, [2, seq(i, i=3..2000, 2)]); # Robert Israel, Feb 03 2016
MATHEMATICA
Select[Prime[Range[400]], MoebiusMu[ #-1]==1&]
PROG
(PARI) lista(nn) = forprime(p=2, nn, if (moebius(p-1) == 1, print1(p, ", "))); \\ Michel Marcus, Jan 10 2016
(PARI) list(lim)=my(v=List(), last); forsquarefree(k=1, lim\1, if(moebius(k)==1, last=k[1], if(k[2][, 2]==[1]~ && k[1]-last==1, listput(v, k[1])))); Vec(v) \\ Charles R Greathouse IV, Jan 08 2018
(Magma) [n: n in [2..2000] | IsPrime(n) and MoebiusMu(n-1) eq 1]; // Vincenzo Librandi, Jan 10 2016
CROSSREFS
Cf. A049092 (primes p with mu(p-1)=0), A078330 (primes p with mu(p-1)=-1), A089451 (mu(p-1) for prime p).
Cf. A002496.
Sequence in context: A329309 A217304 A179876 * A362629 A228434 A031873
KEYWORD
nonn
AUTHOR
N. J. A. Sloane and T. D. Noe, Nov 03 2003
STATUS
approved