|
|
A089451
|
|
a(n) = mu(prime(n)-1), where mu is the Moebius function (A008683).
|
|
10
|
|
|
1, -1, 0, 1, 1, 0, 0, 0, 1, 0, -1, 0, 0, -1, 1, 0, 1, 0, -1, -1, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 0, -1, 0, 0, 0, 0, 1, 0, 1, 0, -1, 0, 0, 0, 1, -1, 1, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 1, 0, 1, 0, 0, 1, -1, 0, 0, 1, 0, 0, 0, 0, -1, 0, -1, 0, -1, -1, 0, 0, 0, 1, 1, 1, 0, 0, -1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 0, -1, 0, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Note that A049092 lists prime(n) such that a(n) = 0. Similarly, A078330 lists prime(n) such that a(n) = -1. See A088179 for prime(n) such that a(n) = 1. Also note that a(n) == A088144(n) (mod prime(n)).
|
|
REFERENCES
|
J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 236.
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Ed Pegg, Jr., Moebius Function (and squarefree numbers)
Eric Weisstein's World of Mathematics, Moebius Function
|
|
FORMULA
|
a(n) = A067460(n) - 1. - Benoit Cloitre, Nov 04 2003
If p = prime(n), then a(n) is congruent modulo p to the sum of all primitive roots modulo p. [Uspensky and Heaslet]. - Michael Somos, Feb 16 2020
|
|
MATHEMATICA
|
Table[MoebiusMu[Prime[n]-1], {n, 150}]
|
|
PROG
|
(PARI) a(n)=moebius(prime(n)-1)
(MAGMA) [MoebiusMu(NthPrime(n)-1): n in [1..100]]; // Vincenzo Librandi, Dec 23 2018
|
|
CROSSREFS
|
Cf. A089495 (mu(p+1) for prime p), A089496 (mu(p+1)+mu(p-1) for prime p), A089497 (mu(p+1)-mu(p-1) for prime p).
Cf. A049092, A078330, A088144, A088179.
Sequence in context: A128432 A195198 A039966 * A145099 A205083 A070886
Adjacent sequences: A089448 A089449 A089450 * A089452 A089453 A089454
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
T. D. Noe, Nov 03 2003
|
|
STATUS
|
approved
|
|
|
|