login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A195198
Characteristic function of squares or three times squares.
4
1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0
OFFSET
0,1
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
A214284 is a similar sequence except with five instead of three. - Michael Somos, Oct 22 2017
LINKS
S. Cooper and M. Hirschhorn, On some infinite product identities, Rocky Mountain J. Math., 31 (2001) 131-139. See p. 133 Theorem 3.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Euler transform of period 12 sequence [1, -1, 1, 0, 0, -1, 0, 0, 1, -1, 1, -1, ...].
Expansion of psi(q^3) * f(-q^2, -q^10) / f(-q, -q^11) in powers of q where psi(), is a Ramanujan theta function and f(, ) is Ramanujan's general theta function.
Multiplicative with a(0) = a(3^e) = 1, a(p^e) = 1 if e even, 0 otherwise.
G.f.: (theta_3(q) + theta_3(q^3)) / 2 = 1 + (Sum_{k>0} x^(k^2) + x^(3*k^2)).
Dirichlet g.f.: zeta(2*s) * (1 + 3^-s).
a(n) = A145377(n) unless n=0. a(3*n + 2) = 0. a(2*n + 1) = A127692(n). a(3*n) = a(n). a(3*n + 1) = A089801(n).
Sum_{k=0..n} a(k) ~ (1+1/sqrt(3)) * sqrt(n). - Amiram Eldar, Sep 14 2023
EXAMPLE
G.f. = 1 + q + q^3 + q^4 + q^9 + q^12 + q^16 + q^25 + q^27 + q^36 + q^48 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ Series[ (EllipticTheta[ 3, 0, q] + EllipticTheta[ 3, 0, q^3]) / 2, {q, 0, n}], {q, 0, n}];
a[ n_] := If[ n < 0, 0, Boole[ OddQ [ Length @ Divisors @ n] || OddQ [ Length @ Divisors[3 n]]]];
Table[If[AnyTrue[{Sqrt[n], Sqrt[3n]}, IntegerQ], 1, 0], {n, 0, 110}] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 22 2020 *)
PROG
(PARI) {a(n) = issquare(n) || issquare(3*n)};
(PARI) {a(n) = if( n<1, n==0, direuler( p=2, n, if( p==3, 1 + X, 1) / (1 - X^2))[n])};
CROSSREFS
KEYWORD
nonn,mult,easy
AUTHOR
Michael Somos, Sep 11 2011
STATUS
approved