login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A195197
Number of Hamiltonian cycles in the generalized Petersen Graph P(n,2).
1
3, 8, 0, 6, 7, 12, 3, 30, 0, 34, 13, 56, 3, 108, 0, 150, 19, 244, 3, 418, 0, 642, 25, 1040, 3, 1712, 0, 2726, 31, 4412, 3, 7174, 0, 11554, 37, 18696, 3, 30292, 0, 48950, 43, 79204, 3, 128202, 0, 207362, 49, 335520
OFFSET
3,1
LINKS
A. J. Schwenk, Enumeration of Hamiltonian cycles in certain generalized Petersen graphs, J. Combin. Theory B 47 (1) (1989) 53-59.
Index entries for linear recurrences with constant coefficients, signature (0, 1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 0, 1).
FORMULA
G.f. -x^3*(3 +8*x -5*x^3 -4*x^4 +x^5 -5*x^6 +x^9 +2*x^10 +x^11 -3*x^2 -5*x^8) / ( (1+x) *(x^2-x+1) *(x^4+x^2-1) *(x-1)^2 *(1+x+x^2)^2 )
MAPLE
A195197 := proc(n)
if modp(n, 6) =0 or modp(n, 6) = 2 then
2*(combinat[fibonacci](n/2+2)-combinat[fibonacci](n/2-2)-1) ;
elif modp(n, 6) = 1 then
n;
elif modp(n, 6) = 3 then
3;
elif modp(n, 6) = 4 then
n+2*(combinat[fibonacci](n/2+2)-combinat[fibonacci](n/2-2)-1) ;
else
0;
end if;
end proc:
MATHEMATICA
CoefficientList[Series[-(3 + 8*x - 5*x^3 - 4*x^4 + x^5 - 5*x^6 + x^9 + 2*x^10 + x^11 - 3*x^2 - 5*x^8)/((1+x)*(x^2-x+1)*(x^4+x^2-1)*(x-1)^2*(1+x+x^2)^2), {x, 0, 60}], x] (* Vincenzo Librandi, Dec 23 2012 *)
CROSSREFS
Sequence in context: A196609 A070063 A016668 * A154462 A112255 A197417
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Sep 11 2011
STATUS
approved