login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A195199
Smallest multiple of n with more than twice as many divisors as n.
4
4, 12, 12, 24, 20, 36, 28, 48, 36, 60, 44, 120, 52, 84, 60, 96, 68, 144, 76, 120, 84, 132, 92, 240, 100, 156, 108, 168, 116, 180, 124, 192, 132, 204, 140, 360, 148, 228, 156, 240, 164, 252, 172, 264, 180, 276, 188, 480, 196, 300, 204, 312, 212, 432, 220, 336
OFFSET
1,1
FORMULA
a(n) = Min_{A000005(k*n) > 2*A000005(n)} k*n.
EXAMPLE
a(4) must have more than 6 divisors because 4 has 3 divisors and 3*2=6. Therefore, it cannot be 16 because 16 has only 5 divisors.
MAPLE
A195199 := proc(n)
for k from 2 do
if numtheory[tau](k*n) > 2*numtheory[tau](n) then
return k*n ;
end if;
end do:
end proc: # R. J. Mathar, Oct 21 2011
MATHEMATICA
Table[d = DivisorSigma[0, n]; m = 1; While[DivisorSigma[0, m*n] <= 2*d, m++]; m*n, {n, 100}] (* T. D. Noe, Oct 21 2011 *)
PROG
(PARI) a(n) = my(m=n, d=numdiv(n)); while(numdiv(m)<=2*d, m+=n); m; \\ Michel Marcus, Jan 08 2022
(Python)
from sympy import divisor_count
def a(n):
dtarget, m = 2*divisor_count(n), 2*n
while divisor_count(m) <= dtarget: m += n
return m
print([a(n) for n in range(1, 57)]) # Michael S. Branicky, Jan 08 2022
(Python)
from math import prod
from itertools import count
from collections import Counter
from sympy import factorint
def A195199(n):
f = Counter(factorint(n))
d = prod(e+1 for e in f.values())
for m in count(2):
if prod(e+1 for e in (f+Counter(factorint(m))).values()) > 2*d:
return m*n # Chai Wah Wu, Feb 28 2022
CROSSREFS
Cf. A000005.
Sequence in context: A005886 A096442 A211437 * A294628 A323188 A284126
KEYWORD
nonn
AUTHOR
J. Lowell, Oct 12 2011
STATUS
approved