OFFSET
1,3
EXAMPLE
G.f.: A(x) = x + x^2 + 5*x^3 + 65*x^4 + 2129*x^5 + 187485*x^6 +...
where A(x) results from nested inversions of shifted series:
A(x) = Series_Reversion(x - x*B(x)), where
B(x) = x + 3*x^2 + 45*x^3 + 1755*x^4 + 172449*x^5 + 45558855*x^6 +...;
B(x) = Series_Reversion(x - 3*x*C(x)), where
C(x) = x + 9*x^2 + 405*x^3 + 47385*x^4 + 13968369*x^5 + 11070801765*x^6 +...;
C(x) = Series_Reversion(x - 9*x*D(x)), where
D(x) = x + 27*x^2 + 3645*x^3 + 1279395*x^4 + 1131437889*x^5 + 2690204828895*x^6 +...;
D(x) = Series_Reversion(x - 27*x*E(x)), where
E(x) = x + 81*x^2 + 32805*x^3 + 34543665*x^4 + 91646469009*x^5 + 653719773421485*x^6 +...;
E(x) = Series_Reversion(x - 27*x*F(x)), where
F(x) = x + 243*x^2 + 295245*x^3 + 932678955*x^4 + 7423363989729*x^5 + 158853904941420855*x^6 +...; ...
PROG
(PARI) {a(n)=local(G=x+x^2); for(k=0, n, G=serreverse(x-3^(n-k)*x*G+x*O(x^n))); polcoeff(G, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 11 2011
STATUS
approved