login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A300489 a(n) = n! * [x^n] -log(1 - x)/(1 - n*x). 1
0, 1, 5, 65, 1766, 83674, 6124584, 639826452, 90328291248, 16558780949136, 3823322392154880, 1085461798576638240, 371610484248792556800, 150961314165968542273920, 71790302154674639506682880, 39506878580692178250399571200, 24909116615180033772524150937600 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..16.

FORMULA

a(n) = n!*n^n*Sum_{k=1..n} 1/(k*n^k).

EXAMPLE

The table of coefficients of x^k in expansion of e.g.f. -log(1 - x)/(1 - n*x) begins:

n = 0: (0), 1,   1,    2,     6,      24,  ...

n = 1:  0, (1),  3,   11,    50,     274,  ...

n = 2:  0,  1,  (5),  32,   262,    2644,  ...

n = 3:  0,  1,   7,  (65),  786,   11814,  ...

n = 4:  0,  1,   9,  110, (1766),  35344,  ...

n = 5:  0,  1,  11,  167,  3346,  (83674), ...

...

This sequence is the main diagonal of the table.

MATHEMATICA

Table[n! SeriesCoefficient[-Log[1 - x]/(1 - n x), {x, 0, n}], {n, 0, 16}]

Join[{0}, Table[n! n^n Sum[1/(k n^k), {k, 1, n}], {n, 1, 16}]]

PROG

(PARI) a(n) = n!*n^n*sum(i=1, n, 1/(i*n^i)); \\ Altug Alkan, Mar 08 2018

CROSSREFS

Cf. A000254, A068102, A069015, A104150.

Sequence in context: A276755 A218221 A046881 * A214348 A195196 A012635

Adjacent sequences:  A300486 A300487 A300488 * A300490 A300491 A300492

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Mar 07 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 26 01:41 EST 2020. Contains 332270 sequences. (Running on oeis4.)