The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A300488 a(n) = n! * [x^n] -exp(n*x)*log(1 - x)/(1 - x). 0
 0, 1, 7, 65, 770, 11149, 191124, 3788469, 85281552, 2149582761, 59983774240, 1835925702137, 61157508893568, 2202760340194517, 85303050939131648, 3534478528925155725, 156026612737389987840, 7310587974761946511761, 362356607517279564386304, 18943214212273585171456753 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS N. J. A. Sloane, Transforms FORMULA a(n) = Sum_{k=1..n} n^(n-k)*binomial(n,k)*k!*H(k), where H(k) is the k-th harmonic number. EXAMPLE The table of coefficients of x^k in expansion of e.g.f. -exp(n*x)*log(1 - x)/(1 - x) begins: n = 0: (0), 1,   3,   11,    50,     274,  ... n = 1:  0, (1),  5,   23,   116,     669,  ... n = 2:  0,  1,  (7),  41,   242,    1534,  ... n = 3:  0,  1,   9,  (65),  452,    3229,  ... n = 4:  0,  1,  11,   95,  (770),   6234,  ... n = 5:  0,  1,  13,  131,  1220,  (11149), ... ... This sequence is the main diagonal of the table. MATHEMATICA Table[n! SeriesCoefficient[-Exp[n x] Log[1 - x]/(1 - x), {x, 0, n}], {n, 0, 19}] Table[Sum[n^(n - k) Binomial[n, k] k! HarmonicNumber[k], {k, 1, n}], {n, 0, 19}] CROSSREFS Cf. A000254, A065456, A073596. Sequence in context: A083302 A099342 A051550 * A085283 A069015 A097819 Adjacent sequences:  A300485 A300486 A300487 * A300489 A300490 A300491 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Mar 07 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 26 21:07 EST 2021. Contains 349344 sequences. (Running on oeis4.)