login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300488
a(n) = n! * [x^n] -exp(n*x)*log(1 - x)/(1 - x).
0
0, 1, 7, 65, 770, 11149, 191124, 3788469, 85281552, 2149582761, 59983774240, 1835925702137, 61157508893568, 2202760340194517, 85303050939131648, 3534478528925155725, 156026612737389987840, 7310587974761946511761, 362356607517279564386304, 18943214212273585171456753
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=1..n} n^(n-k)*binomial(n,k)*k!*H(k), where H(k) is the k-th harmonic number.
EXAMPLE
The table of coefficients of x^k in expansion of e.g.f. -exp(n*x)*log(1 - x)/(1 - x) begins:
n = 0: (0), 1, 3, 11, 50, 274, ...
n = 1: 0, (1), 5, 23, 116, 669, ...
n = 2: 0, 1, (7), 41, 242, 1534, ...
n = 3: 0, 1, 9, (65), 452, 3229, ...
n = 4: 0, 1, 11, 95, (770), 6234, ...
n = 5: 0, 1, 13, 131, 1220, (11149), ...
...
This sequence is the main diagonal of the table.
MATHEMATICA
Table[n! SeriesCoefficient[-Exp[n x] Log[1 - x]/(1 - x), {x, 0, n}], {n, 0, 19}]
Table[Sum[n^(n - k) Binomial[n, k] k! HarmonicNumber[k], {k, 1, n}], {n, 0, 19}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Mar 07 2018
STATUS
approved