This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A300490 Expansion of e.g.f. -exp(-x)*log(1 - x)/(1 - x). 3
 0, 1, 1, 5, 20, 109, 689, 5053, 42048, 391641, 4036697, 45618341, 560889988, 7454314789, 106488455033, 1627269878557, 26487441519584, 457532446622001, 8359188190686609, 161056273132588933, 3263644496701880404, 69389030027882288861, 1544501472271318499105 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Inverse binomial transform A000254. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..450 N. J. A. Sloane, Transforms FORMULA a(n) = Sum_{k=1..n} (-1)^(n-k)*binomial(n,k)*k!*H(k), where H(k) is the k-th harmonic number. a(n) ~ n! * (log(n) + gamma) / exp(1), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jun 23 2018 EXAMPLE -exp(-x)*log(1 - x)/(1 - x) = x/1! + x^2/2! + 5*x^3/3! + 20*x^4/4! + 109*x^5/5! + 689*x^6/6! + 5053*x^7/7! + ... MAPLE b:= proc(n) option remember; `if`(n<2, n, n*b(n-1)+(n-1)!) end: a:= proc(n) add(b(k)*(-1)^(n-k)*binomial(n, k), k=0..n) end: seq(a(n), n=0..25);  # Alois P. Heinz, Mar 07 2018 MATHEMATICA nmax = 22; CoefficientList[Series[-Exp[-x] Log[1 - x]/(1 - x), {x, 0, nmax}], x] Range[0, nmax]! Table[Sum[(-1)^(n - k) Binomial[n, k] k! HarmonicNumber[k], {k, 1, n}], {n, 0, 22}] CROSSREFS Cf. A000254, A073596. Sequence in context: A137961 A167145 A277032 * A020039 A319489 A207972 Adjacent sequences:  A300487 A300488 A300489 * A300491 A300492 A300493 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Mar 07 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 15 20:00 EST 2019. Contains 330000 sequences. (Running on oeis4.)