login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A300487
Numbers k whose 10's complement mod 10 of their digits is equal to phi(k), the Euler totient function of k.
0
74, 834, 80940, 809400, 833334, 7414114, 7422694, 7539694, 8094000, 80940000, 809400000, 8094000000, 80940000000, 83335786566, 809400000000, 7539682539694, 8094000000000, 80940000000000
OFFSET
1,1
COMMENTS
Any number of the form 8094*10^j, with j>0, is part of the sequence because its Euler totient function is 2016*10^j.
Contains subsequence 834, 833334, 833333333333334, ... formed by numbers (10^k/4 + 2)/3 for k in A296059. - Max Alekseyev, Mar 09 2024
EXAMPLE
phi(74) = 36 that is the 10's complement of the digits of 74.
MAPLE
with(numtheory): P:=proc(q) local a, b, k, n;
for n from 1 to q do a:=convert(phi(n), base, 10);
for k from 1 to nops(a) do a[k]:=(10-a[k]) mod 10; od; b:=0;
for k from 1 to nops(a) do b:=b*10+a[nops(a)-k+1]; od;
if b=n then print(n); fi; od; end: P(10^9);
PROG
(PARI) isok(x) = {my(dx = digits(x), dy = vector(#dx, k, (10-dx[k]) % 10)); fromdigits(dy) == eulerphi(x); } \\ Michel Marcus, Mar 12 2018
CROSSREFS
KEYWORD
nonn,base,more
AUTHOR
Paolo P. Lava, Mar 07 2018
EXTENSIONS
a(11)-a(15) from Giovanni Resta, Mar 09 2018
a(16)-a(18) from Max Alekseyev, Mar 09 2024
STATUS
approved