The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A300487 Numbers k whose 10's complement mod 10 of their digits is equal to phi(k), the Euler totient function of k. 0

%I

%S 74,834,80940,809400,833334,7414114,7422694,7539694,8094000,80940000,

%T 809400000,8094000000,80940000000,83335786566,809400000000

%N Numbers k whose 10's complement mod 10 of their digits is equal to phi(k), the Euler totient function of k.

%C Any number of the form 8094*10^j, with j>0, is part of the sequence because its Euler totient function is 2016*10^j.

%e phi(74) = 36 that is the 10's complement of the digits of 74.

%p with(numtheory): P:=proc(q) local a,b,k,n;

%p for n from 1 to q do a:=convert(phi(n),base,10);

%p for k from 1 to nops(a) do a[k]:=(10-a[k]) mod 10; od; b:=0;

%p for k from 1 to nops(a) do b:=b*10+a[nops(a)-k+1]; od;

%p if b=n then print(n); fi; od; end: P(10^9);

%o (PARI) isok(x) = {my(dx = digits(x), dy = vector(#dx, k, (10-dx[k]) % 10)); fromdigits(dy) == eulerphi(x); } \\ _Michel Marcus_, Mar 12 2018

%Y Cf. A000010, A055120.

%K nonn,base,more

%O 1,1

%A _Paolo P. Lava_, Mar 07 2018

%E a(11)-a(15) from _Giovanni Resta_, Mar 09 2018

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 27 19:23 EST 2020. Contains 332308 sequences. (Running on oeis4.)