login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242146
Number of length 2+5 0..n arrays with no consecutive six elements summing to more than 3*n.
1
74, 1113, 7862, 36224, 126894, 367358, 924300, 2088459, 4333978, 8394287, 15356562, 26776802, 44817566, 72410412, 113445080, 172987461, 257528394, 375265333, 536418926, 753586548, 1042134830, 1420633226, 1911330660
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = (1021/2520)*n^7 + (28/9)*n^6 + (3679/360)*n^5 + (1349/72)*n^4 + (1873/90)*n^3 + (1019/72)*n^2 + (779/140)*n + 1.
Conjectures from Colin Barker, Oct 31 2018: (Start)
G.f.: x*(74 + 521*x + 1030*x^2 + 348*x^3 + 90*x^4 - 28*x^5 + 8*x^6 - x^7) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>8.
(End)
EXAMPLE
Some solutions for n=4:
..2....1....4....0....2....3....1....0....3....0....1....4....0....1....0....3
..1....1....2....2....4....0....1....2....0....3....3....3....3....1....0....4
..0....3....3....1....0....2....0....3....4....4....3....2....1....3....4....0
..0....2....3....1....4....3....2....0....0....1....0....1....2....1....1....2
..0....1....0....3....1....0....4....1....3....1....0....2....0....0....0....3
..1....2....0....2....0....3....1....2....0....0....0....0....0....0....1....0
..1....0....3....2....2....1....0....2....4....0....4....1....2....2....4....1
CROSSREFS
Row 2 of A242144.
Sequence in context: A204353 A300487 A222861 * A007033 A277941 A017790
KEYWORD
nonn
AUTHOR
R. H. Hardin, May 05 2014
STATUS
approved