login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242145
Number of length 1+5 0..n arrays with no consecutive six elements summing to more than 3*n.
1
42, 435, 2338, 8688, 25494, 63490, 140148, 282051, 527626, 930237, 1561638, 2515786, 3913014, 5904564, 8677480, 12459861, 17526474, 24204727, 32881002, 44007348, 58108534, 75789462, 97742940, 124757815, 157727466, 197658657
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = (1/2)*n^6 + (131/40)*n^5 + (71/8)*n^4 + (103/8)*n^3 + (85/8)*n^2 + (97/20)*n + 1.
Conjectures from Colin Barker, Oct 31 2018: (Start)
G.f.: x*(42 + 141*x + 175*x^2 - 13*x^3 + 21*x^4 - 7*x^5 + x^6) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)
EXAMPLE
Some solutions for n=4:
2 4 2 3 0 2 1 1 0 2 4 0 0 0 1 3
2 0 1 0 0 4 2 2 0 1 1 3 0 1 2 0
1 2 1 1 4 2 1 3 1 1 1 0 0 0 3 0
3 3 4 2 4 1 3 0 1 4 0 0 0 1 3 2
1 2 3 3 1 1 2 4 0 2 1 2 0 2 1 1
1 0 0 1 3 2 2 2 4 1 1 3 0 4 2 2
CROSSREFS
Row 1 of A242144.
Sequence in context: A027318 A251425 A242144 * A230933 A231110 A156762
KEYWORD
nonn
AUTHOR
R. H. Hardin, May 05 2014
STATUS
approved